Minimum Uncertainty Wavefunction

luckymango
Messages
7
Reaction score
0
Why does one refers to it as a "minimum uncertainty" wavefunction?
 
Physics news on Phys.org
The Heisenberg uncertainty principle states \sigma_x\sigma_p\geq \frac{\hbar}{2}.
This is an inequality which always holds for any wavefunction. You can make wavefunctions for which \sigma_x and \sigma_p are both pretty big, but you can't make them both arbitrarily small.
You could raise the question for what wavefunction the uncertainty is minimal, that is, when the inequality becomes an equality. This is the minimum uncertainty wavefunction (It turns out be a gaussian.)
 
It has, of course, to be a gaussian as qm is a harmoinc theory!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top