Minimum wavelength of phonons under the Debye aproximation

AngelFis93
Messages
2
Reaction score
0
Homework Statement
It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Relevant Equations
λ=v/f
Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelenght should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
 
Last edited:
Physics news on Phys.org
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.
 
Last edited:
AngelFis93 said:
Homework Statement:: It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Homework Equations:: λ=v/f

Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelenght should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
Is the intention of the example to show you where the Debye approximation breaks down? Because, the minimum wavelength is actually ##2a## because of the Nyquist theorem (https://en.wikipedia.org/wiki/Phonon#Lattice_waves).

You should try to take the value of ##2a## and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
 
Dr_Nate said:
Is the intention of the example to show you where the Debye approximation breaks down?
I don't think so, at least there isn't anything in the statement that makes me think that way.
Dr_Nate said:
You should try to take the value of 2a2a and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
I came to the same conclusion, a·2/√3 gives the exact solution, I just can't find in the theory were it's justified why it is calculated this way. A mistake in the solution could be posible aswell, so i probably ask the proffesor directly.

Thanks for the reply

trurle said:
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.

I get 3.2 ·10^(13) rad/s using ω =v·k=v·a^(-1)(6π^2)^(1/3) for ω,k on Debyes aproximation (a^(-1) for being a cubic lattice, and using the definition of Debye's k).

Thanks for the reply.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Replies
0
Views
5K
Replies
1
Views
2K
Replies
1
Views
4K
Replies
1
Views
5K
Replies
5
Views
3K
Replies
5
Views
3K
Back
Top