Water vapour will reduce the lapse rate, which is a negative feedback; and changes to cloud can reflect sunlight (negative feedback) and also absorb infrared even more strongly than gaseous vapour (positive feedback). It looks like we may be pulling apart some of the scientific literature on this question as the thread progresses.
When water vapour reaches dew point and starts to condense on whatever CCN's are available, there is a drop in air pressure. I believe this can result in fierce updraughts within large cumulus clouds. You can see this effect here in Pembrokeshire. The "Finger of God" extending upwards from the cloud tops. Very impressive and a warning to any aircraft to keep clear. I would assume a lot of energy would be transported upwards even while the cloud is accumulating energy from the sunlight above and longwave radiation from below. At night I assume the "feedbacks" will change due to lack of solar input.
I feel I must acquire more understanding of the "greenhouse effect" of water vapour and liquid water (clouds, fog) and ice crystals (cirrus clouds) in the atmosphere and the effect on positive/negative feedback. Possibly, then, an understanding of the "feedback" due to increasing CO2 will be more clear to me.
So back to my imaginary 1m^2 column of air and a dry adiabatic lapse rate of 3C per 1000 feet and assuming the air temparature has stabilised from about 2 meters above surface level I expect the air temperature at 10,000 feet (plus 6 feet or so) to be some 30C cooler.
Now consider the air in 1000 foot slabs/layers, each layer 3C cooler than the layer below and that a net transfer of heat will only flow from hotter to cooler. We must also bear in mind that each layer has less mass than the layer below. The flow of energy is upwards. It appears only the bottom layer of a 1000 feet or so seems to have any feedback to the surface even as the net flow is upwards. It has been established that increasing the water vapour content does not effect the dry adiabatic lapse rate therefore any increase in CO2 also has no effect in dry air.
Sea surface temperatures appear to range from a minimum of -2C to a maximum of about 33C. A much smaller variation than on land and also less inclined to change sharply over short time periods. Seeing that slightly more than 70% of the Earth's surface is water I thought this might be a good place to start. In my attempts to gain some knowledge about water I have been looking at the
Water Absorption Spectrum page on Martin Chaplin's site.
I must confess I find this site very heavy going, but extremely interesting. I never knew water could take on so many different molecular configurations which seem to be responsive to different temperature regimes. Every change seems to have its own spectral response. Quite awesome.
On the above page is a graph titled
The visible and UV spectra of liquid water
http://www1.lsbu.ac.uk/water/images/watopt.gif
You can see clearly how light and some UV can penetrate quite deeply into clear water. (I read somewhere that you can get sunburn under water and thought Huh!) The area of the graph I am trying to get to grips with is the IR region. From about 3µm to 100µm. Here penetration seems limited. If I read that correctly I fail to see how downwelling IR from any source can possibly provide any significant heating into water. From other literature (haven't found it on Chaplin's site) I read that IR reacts with surface molecules of water to increase the rate of production of water vapour. How this may be quantified I haven't clue.
So to satisfy my curiosity I will suspend a shielded IR source over a measured quantity of water and try to record any temperature change. The IR source, still to be obtained, will be a circular slab of steel or cast iron of about 2kg mass and the shield will be a small drum such that airflow past the source is minimal but heat radiated downward will have a clear path to the water surface. Should be interesting. I will post the result in due course.