Modular arith, number theory problem

imranq
Messages
57
Reaction score
1

Homework Statement



Find the number of roots for the equation x^2+1=0 \mod n \: for \: n = 8,9,10,45

Homework Equations


The Attempt at a Solution



I have no idea where to start. Could someone help me understand?
 
Physics news on Phys.org
Do you understand what mod refers to?
 
yea, mod is used to represent items in terms of base n. But I don't understand how that is going to change the number of roots in the problem
 
not sure but is this like modular arithmetic below?

so for the case n = 2,
try x = 0, 02+1= 1mod2 = 1 - FALSE
try x = 1, 12+1= 2mod2 = 0 - TRUE
x = 1 is the only for the n = 2 case

so for the case n = 3,
try x = 0, 02+1= 1mod2 = 1 - FALSE
try x = 1, 12+1= 2mod3 = 2 - FALSE
try x = 2, 32+1= 2mod3 = 0 - TRUE
x = 1 is the only solution for the n = 3 case

will start getting more intersting as the square get bigger and do more "loops" in the modular arithmetic...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top