I Modular Arithmetic: Find Multiples, Understand the Reason

  • I
  • Thread starter Thread starter rashida564
  • Start date Start date
  • Tags Tags
    Arithmetic
rashida564
Messages
220
Reaction score
7
TL;DR Summary
Find a ∈ Z such that a^6 ≡ a mod 6
Hi everyone, I can find multiple of number for example 2,3,4 and so on. But is there any reason why those number does work.
 
Mathematics news on Phys.org
We have ##6 \,|\,a^6-a=a(a^5-1)=a(a-1)(a^4+a^3+a^2+a+1)##, so the divisors of ##6## must be divisors of the factors on the right. E.g. ##a=3,4## are immediately clear, and ##a=2## is wrong, as ##2^6=64 \equiv 4\not\equiv 2 \operatorname{mod}6\,.##
 
  • Like
Likes jedishrfu
Is it try and error method?
 
Another way to look at it is that your congruence is equivalent to the two simultaneous congruences ##a^6\equiv a \mod 2## and ##a^6\equiv a\mod 3##. The first congruence is always true, and the second is true when ##a\equiv 0,1\mod 3##, but fails when ##a\equiv 2\mod 3##.
 
  • Like
Likes jedishrfu and mfb
rashida564 said:
Is it try and error method?
Where did you see try and error? Factorization to investigate factors is a quite natural thing.

##a^6\equiv a \operatorname{mod} 6 ## is defined as ##6\,|\,a^6-a##, so factoring the polynomial ##a^6-a## is the next thing to do. After that, it becomes clear that ##2\,|\,a^6-6## in any case, as ##a(a-1)\,|\,a^6-a##. So, we are left with what @Infrared has said, the divisor ##3##. We have that ##3## divides ##a(a-1)## iff ##3\,|\,a \Longleftrightarrow a\equiv 0 \operatorname{mod} 3## or ##3\,|\,(a-1) \Longleftrightarrow a\equiv 1\operatorname{mod} 3## because ##3## is prime. Thus we are left with all numbers ##a \equiv 2 \operatorname{mod} 3##, i.e. ##a=3n+2## and ##6\,|\,a^6-a \Longleftrightarrow 3\,|\,a^4+a^3+a^2+a+1## for those numbers. However, if ##a=3n+2## it is easy to see, that ##a^4+a^3+a^2+a+1 =3m+2## which is never divisible by ##3##.
 
  • Like
Likes jedishrfu
I see quicker that ##(3n+2)^6 = 3m + 1## (because I can use ##x^6 = (x^2)^3## ) than I see the same for ##a^4+a^3+a^2+a+1 =3m+2##
 
  • Like
Likes jedishrfu
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top