I Modular Arithmetic: Find Multiples, Understand the Reason

  • I
  • Thread starter Thread starter rashida564
  • Start date Start date
  • Tags Tags
    Arithmetic
AI Thread Summary
The discussion centers on understanding why certain numbers work as multiples in modular arithmetic, specifically in the context of the equation a^6 ≡ a (mod 6). It highlights the factorization of a^6 - a and the necessity for divisors of 6 to be present in the factors of the equation. The conversation reveals that while the congruence holds for a ≡ 0, 1 (mod 3), it fails for a ≡ 2 (mod 3), leading to the conclusion that numbers of the form a = 3n + 2 do not satisfy the condition. The participants emphasize that factorization is a natural method for exploring these relationships rather than relying solely on trial and error. Overall, the discussion illustrates the interplay between modular arithmetic and factorization in determining valid multiples.
rashida564
Messages
220
Reaction score
7
TL;DR Summary
Find a ∈ Z such that a^6 ≡ a mod 6
Hi everyone, I can find multiple of number for example 2,3,4 and so on. But is there any reason why those number does work.
 
Mathematics news on Phys.org
We have ##6 \,|\,a^6-a=a(a^5-1)=a(a-1)(a^4+a^3+a^2+a+1)##, so the divisors of ##6## must be divisors of the factors on the right. E.g. ##a=3,4## are immediately clear, and ##a=2## is wrong, as ##2^6=64 \equiv 4\not\equiv 2 \operatorname{mod}6\,.##
 
  • Like
Likes jedishrfu
Is it try and error method?
 
Another way to look at it is that your congruence is equivalent to the two simultaneous congruences ##a^6\equiv a \mod 2## and ##a^6\equiv a\mod 3##. The first congruence is always true, and the second is true when ##a\equiv 0,1\mod 3##, but fails when ##a\equiv 2\mod 3##.
 
  • Like
Likes jedishrfu and mfb
rashida564 said:
Is it try and error method?
Where did you see try and error? Factorization to investigate factors is a quite natural thing.

##a^6\equiv a \operatorname{mod} 6 ## is defined as ##6\,|\,a^6-a##, so factoring the polynomial ##a^6-a## is the next thing to do. After that, it becomes clear that ##2\,|\,a^6-6## in any case, as ##a(a-1)\,|\,a^6-a##. So, we are left with what @Infrared has said, the divisor ##3##. We have that ##3## divides ##a(a-1)## iff ##3\,|\,a \Longleftrightarrow a\equiv 0 \operatorname{mod} 3## or ##3\,|\,(a-1) \Longleftrightarrow a\equiv 1\operatorname{mod} 3## because ##3## is prime. Thus we are left with all numbers ##a \equiv 2 \operatorname{mod} 3##, i.e. ##a=3n+2## and ##6\,|\,a^6-a \Longleftrightarrow 3\,|\,a^4+a^3+a^2+a+1## for those numbers. However, if ##a=3n+2## it is easy to see, that ##a^4+a^3+a^2+a+1 =3m+2## which is never divisible by ##3##.
 
  • Like
Likes jedishrfu
I see quicker that ##(3n+2)^6 = 3m + 1## (because I can use ##x^6 = (x^2)^3## ) than I see the same for ##a^4+a^3+a^2+a+1 =3m+2##
 
  • Like
Likes jedishrfu
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top