MHB Modular Arithmetic: Introduction to Congruences & Interesting Applications

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Arithmetic
AI Thread Summary
The discussion focuses on effectively introducing congruences in a number theory course, emphasizing their practical applications. Congruences allow for arithmetic operations within finite systems by looping the number line, simplifying the handling of large numbers. This cyclical approach reveals properties of numbers, such as evenness or oddness, and connects to concepts like the Chinese Remainder Theorem. Historical references highlight the significance of congruences in timekeeping and measurement systems, illustrating their longstanding relevance. Engaging students with thought-provoking questions can enhance their understanding of these concepts.
matqkks
Messages
280
Reaction score
5
What the best way to introduce congruences in a number theory course? I am looking for something which will have an impact. What are the really interesting applications of congruent mathematics?
 
Mathematics news on Phys.org
matqkks said:
What the best way to introduce congruences in a number theory course? I am looking for something which will have an impact. What are the really interesting applications of congruent mathematics?
Ask your students this: If it rains at midnight, what is the probability that it will be sunny in 72 hours?
 
Numbers (and by this I mean positive integers), as anyone ought to know, can be really big. Large numbers are quite time-consuming for us poor humans to deal with.

Often, however, we want to know just some PROPERTY of a number, like whether or not it is even or odd.

Well, it turns out that there is an arithmetic for that, and it works in much the same way as regular arithmetic.

In fact, we can STILL do arithmetic on a number of finite systems, by "looping" the number line (the integers embedded in the reals) around to 0, at some given integer n. This changes the "linear" aspect of arithmetical operations to a cyclical one. And everything still works (well, almost everything...division is problematic if n is not prime...for pretty much the same reason as we don't allow division by 0).

For example, if we are "counting by 6's", the fact that 6 = 2*3 suggests we should "count by 3's" and "count by 2's" and compare the results. And indeed, this works (this is a simplified explanation of the basis for the Chinese Remainder Theorem)!

Of course, what we are actually doing is taking an infinite cyclic integral domain, and forming the cyclic quotient ring, modulo a principal ideal. But that sounds so technical...and obscures the simple underlying idea: we tame infinity by chopping it up into finite bits.

And the payoff is: facts involving very BIG numbers can be deduced from facts involving much SMALLER numbers, and everybody wins!

(Evgeny's observation is pertinent: the "infinite line of time" can be tamed by use of a clock, which repeats itself every so often...the usefulness of this has been known from antiquity...the Babylonians took this idea and ran with it, basing their number system on "highly divisible numbers", forming the basis of our present calender, radial measurements, and time-keeping system...ever wonder where all those 12's, 30's, 60's and 360's come from?).

Mathematics is in many ways is the story of two simple concepts: the line and the circle. Each has many stories to tell, and secrets to teach us.
 
Thanks for this detailed reply. It is exactly what I was looking for.
 
Evgeny.Makarov said:
Ask your students this: If it rains at midnight, what is the probability that it will be sunny in 72 hours?
Cute, but "in 72 hours" can reasonably be interpreted as "72 hours from now". Better wording "If it rains at midnight, what is the probability it will be sunny 72 hour later?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top