Molecular sensing fluorescent proteins and FRET pairs

AI Thread Summary
Fluorescent proteins (FPs) and Förster Resonance Energy Transfer (FRET) pairs are both used in biological analysis but serve different purposes. FPs, like GFP and RFP, are used to visualize molecules by emitting light at specific wavelengths after absorbing light. FRET occurs when energy is transferred between two fluorophores, which can include both FPs and small organic dyes, allowing for the study of molecular interactions and distances. Measuring FRET efficiency between identical fluorophores, known as homo-FRET, is challenging due to their similar emission spectra, but can be achieved through fluorescence anisotropy techniques. Understanding the relationship between FPs and FRET enhances the ability to analyze molecular structures and interactions in biological research.
rwooduk
Messages
757
Reaction score
59
Hope this is in the right place, apologies if not.

We have studied green flourescent protein GFP and others (RFP, CFP etc) as a means of analysing an organism / sample, you need two that have unique fluorophores. We have also studied the use of FRET pairs such as florecein-florescien or florecein-rhodamine for studying interatomic distance / molecular structure.

My question is are flourescent proteins and FRET pairs related or are they for completely different analyses?

Think I'm getting the two mixed up, or are they related? i.e. do FP's contain the chemical in Fret pairs?

Hope this question makes some kind of sense I am really not a biologist!
 
Biology news on Phys.org
In biology, we often make use of fluorescence to visualize molecules. Fluorescent molecules will absorb light of a certain wavelength, and emit light of a slightly longer wavelength. The two most common types of fluorescent probes used in biology are small organic dyes (such as fluorescein or rhodamine) and fluorescent proteins (such as GFP, YFP, CFP, etc.).

Förster Resonance Energy Transfer (FRET, sometimes referred to as fluorescence resonance energy transfer) is a phenomenon that can occur with any pair of fluorescent molecules. When FRET occurs, one fluorophore can transfer its energy to a fluorophore that emits at a longer wavelength. This process can occur for any fluorophore, so you can have FRET occur between organic dyes (such as the fluorescein-rhodamine pair you mentioned), between fluorescent proteins (CFP-YFP is a popular pair of proteins to use for this purpose), or between an organic dye and a fluorescent protein.
 
Last edited:
Ygggdrasil said:
In biology, we often make use of fluorescence to visualize molecules. Fluorescent molecules will absorb light of a certain wavelength, and emit light of a slightly longer wavelength. The two most common types of fluorescent probes used in biology are small organic dyes (such as fluorescein or rhodamine) and fluorescent proteins (such as GFP, YFP, CFP, etc.).

Förster Resonance Energy Transfer (FRET, sometimes referred to as fluorescence resonance energy transfer) is a phenomenon that can occur with any pair of fluorescent molecules. When FRET occurs, one fluorophore can transfer its energy to a fluorophore that emits at a longer wavelength. This process can occur for any fluorophore, so you can have FRET occur between organic dyes (such as the fluorescein-rhodamine pair you mentioned), between fluorescent proteins (CFP-YFP is a popular pair of proteins to use for this purpose), or between an organic dye and a fluorescent protein.

The problem I'm having is that if you use florecein-florescien then how would you be able to distinguish between the two in FRET? if that makes sense.

aside from that, that's very helpful thank you!
 
Measuring the FRET efficiency between two identical fluorophores (homo-FRET) is difficult because the donor and acceptor fluorescence are not spectrally distinct, but it is possible. Measuring homo-FRET relies on looking at the anisotropy of the emitted light; that is, the polarization of the emitted light compared to the polarization of the excitation light.

When you excite a sample with polarized light, only those fluorophores whose transition dipoles align with the light will be excited. If these fluorophores are rigidly attached to large (greater than tens or hundreds of kilodaltons) molecules, then you would not expect these molecules to rotate much during the lifetime of the excited state (~ a few nanoseconds), so the emitted fluorescence will have the same polarization as the excitation light. FRET, however, will tend to randomize the polarization of the emitted light because FRET can transfer energy to fluorophores whose transition dipoles were not aligned with the original excitation light. Thus, fluorescence anisotropy measurements allow you to measure the FRET efficiency between fluorophores with identical or near-identical emission spectra.
 
Last edited:
Ygggdrasil said:
Measuring the FRET efficiency between two identical fluorophores (homo-FRET) is difficult because the donor and acceptor fluorescence are not spectrally distinct, but it is possible. Measuring homo-FRET relies on looking at the anisotropy of the emitted light; that is, the polarization of the emitted light compared to the polarization of the excitation light.

When you excite a sample with polarized light, only those fluorophores whose transition dipoles align with the light will be excited. If these fluorophores are rigidly attached to large (greater than tens or hundreds of kilodaltons) molecules, then you would not expect these molecules to rotate much during the lifetime of the excited state (~ a few nanoseconds), so the emitted fluorescence will have the same polarization as the excitation light. FRET, however, will tend to randomize the polarization of the excited light because FRET can transfer energy to fluorophores whose transition dipoles were not aligned with the original excitation light. Thus, fluorescence anisotropy measurement can allow you to measure the FRET efficiency between fluorophores with identical or near-identical emission spectra.

wow, that's a very detailed explanation and clears things up immensely, thank you very much!
 
https://www.nhs.uk/mental-health/conditions/body-dysmorphia/ Most people have some mild apprehension about their body, such as one thinks their nose is too big, hair too straight or curvy. At the extreme, cases such as this, are difficult to completely understand. https://www.msn.com/en-ca/health/other/why-would-someone-want-to-amputate-healthy-limbs/ar-AA1MrQK7?ocid=msedgntp&cvid=68ce4014b1fe4953b0b4bd22ef471ab9&ei=78 they feel like they're an amputee in the body of a regular person "For...
Thread 'Did they discover another descendant of homo erectus?'
The study provides critical new insights into the African Humid Period, a time between 14,500 and 5,000 years ago when the Sahara desert was a green savanna, rich in water bodies that facilitated human habitation and the spread of pastoralism. Later aridification turned this region into the world's largest desert. Due to the extreme aridity of the region today, DNA preservation is poor, making this pioneering ancient DNA study all the more significant. Genomic analyses reveal that the...
Whenever these opiods are mentioned they usually mention that e.g. fentanyl is "50 times stronger than heroin" and "100 times stronger than morphine". Now it's nitazene which the public is told is everything from "much stronger than heroin" and "200 times stronger than fentany"! Do these numbers make sense at all? How do they arrive at them? Kill thousands of mice? En passant: nitazene have already been found in both Oxycontin pills and in street "heroin" here, so Naloxone is more...

Similar threads

Back
Top