Moment of inertia of a double physical pendulum

AF Fardin
Messages
7
Reaction score
1
Homework Statement
My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations
L=T-V
$\tau=Fr=I\alpha
I am having trouble to find the moment of inertia of the second rod!
Is it related to the first rod??
At the beginning I thought It's not!
But when took those as constant,the equation had become way much simpler and there is nothing about chaos!
My approach is given below
received_883501935942195.jpeg
 
Physics news on Phys.org
Use the fact that the kinetic energy of either rod is the sum of two contributions:

(1) the kinetic energy due to the motion of the center of mass of the rod: ##\frac {1}{2} M V_{cm}^2 ##

(2) the kinetic energy due to rotation about the center of mass: ##\frac{1}{2} I_{cm} \omega^2##
 
AF Fardin said:
Homework Statement:: My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations:: L=T-V
$\tau=Fr=I\alpha

My approach is given below
Equations in images are not allowed; please use the PF LaTeX support to enter equations directly into your post. There is a "LaTeX Guide" link at the bottom left of the post window.
 
Moderator's note: Thread moved to advanced physics homework help.
 
  • Like
Likes AF Fardin and Delta2
The big problem here is the assumption that
$$
T = \frac 12 (I_1\dot\theta_1^2 + I_2\dot\theta_2^2)
$$
The kinetic energy cannot be written on this form. Note that the second rod will also move when ##\theta_1## changes.

Note: The angles are the angles each rod make with the vertical. This does not mean that the motion of rod 2 is independent of ##\theta_1##.
I made an exam problem with different coordinates for a double pendulum… that really threw some people off …
 
  • Like
  • Informative
Likes AF Fardin, BvU and Delta2
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...

Similar threads

Back
Top