Moment of inertia of a double physical pendulum

AF Fardin
Messages
7
Reaction score
1
Homework Statement
My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations
L=T-V
$\tau=Fr=I\alpha
I am having trouble to find the moment of inertia of the second rod!
Is it related to the first rod??
At the beginning I thought It's not!
But when took those as constant,the equation had become way much simpler and there is nothing about chaos!
My approach is given below
received_883501935942195.jpeg
 
Physics news on Phys.org
Use the fact that the kinetic energy of either rod is the sum of two contributions:

(1) the kinetic energy due to the motion of the center of mass of the rod: ##\frac {1}{2} M V_{cm}^2 ##

(2) the kinetic energy due to rotation about the center of mass: ##\frac{1}{2} I_{cm} \omega^2##
 
AF Fardin said:
Homework Statement:: My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations:: L=T-V
$\tau=Fr=I\alpha

My approach is given below
Equations in images are not allowed; please use the PF LaTeX support to enter equations directly into your post. There is a "LaTeX Guide" link at the bottom left of the post window.
 
Moderator's note: Thread moved to advanced physics homework help.
 
  • Like
Likes AF Fardin and Delta2
The big problem here is the assumption that
$$
T = \frac 12 (I_1\dot\theta_1^2 + I_2\dot\theta_2^2)
$$
The kinetic energy cannot be written on this form. Note that the second rod will also move when ##\theta_1## changes.

Note: The angles are the angles each rod make with the vertical. This does not mean that the motion of rod 2 is independent of ##\theta_1##.
I made an exam problem with different coordinates for a double pendulum… that really threw some people off …
 
  • Like
  • Informative
Likes AF Fardin, BvU and Delta2
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top