Moment of inertia of a double physical pendulum

Click For Summary
The discussion focuses on determining the moment of inertia for the second rod in a double physical pendulum system. The initial assumption that the moment of inertia of the second rod is independent of the first rod is challenged, as the motion of both rods is interdependent. The kinetic energy of each rod must account for both the center of mass motion and rotation, complicating the equations of motion. A key point is that the kinetic energy cannot simply be expressed as a sum of the individual moments of inertia due to the coupled motion of the rods. Understanding these relationships is crucial for accurately solving the equations of motion for the double pendulum.
AF Fardin
Messages
7
Reaction score
1
Homework Statement
My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations
L=T-V
$\tau=Fr=I\alpha
I am having trouble to find the moment of inertia of the second rod!
Is it related to the first rod??
At the beginning I thought It's not!
But when took those as constant,the equation had become way much simpler and there is nothing about chaos!
My approach is given below
received_883501935942195.jpeg
 
Physics news on Phys.org
Use the fact that the kinetic energy of either rod is the sum of two contributions:

(1) the kinetic energy due to the motion of the center of mass of the rod: ##\frac {1}{2} M V_{cm}^2 ##

(2) the kinetic energy due to rotation about the center of mass: ##\frac{1}{2} I_{cm} \omega^2##
 
AF Fardin said:
Homework Statement:: My task is to solve the equation of motion for a double "physical" pendulum!
Relevant Equations:: L=T-V
$\tau=Fr=I\alpha

My approach is given below
Equations in images are not allowed; please use the PF LaTeX support to enter equations directly into your post. There is a "LaTeX Guide" link at the bottom left of the post window.
 
Moderator's note: Thread moved to advanced physics homework help.
 
  • Like
Likes AF Fardin and Delta2
The big problem here is the assumption that
$$
T = \frac 12 (I_1\dot\theta_1^2 + I_2\dot\theta_2^2)
$$
The kinetic energy cannot be written on this form. Note that the second rod will also move when ##\theta_1## changes.

Note: The angles are the angles each rod make with the vertical. This does not mean that the motion of rod 2 is independent of ##\theta_1##.
I made an exam problem with different coordinates for a double pendulum… that really threw some people off …
 
  • Like
  • Informative
Likes AF Fardin, BvU and Delta2
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 76 ·
3
Replies
76
Views
7K
  • · Replies 11 ·
Replies
11
Views
7K
  • · Replies 7 ·
Replies
7
Views
6K