MHB Momentum Change in Hockey Ball: Mass 0.2kg, Speed 8m/s to 5m/s

Click For Summary
A hockey ball with a mass of 0.2 kg is initially traveling at 8 m/s before being hit, resulting in a change in momentum when its speed is reduced to 5 m/s after being intercepted. The ball's acceleration is defined as a = -0.5 - kt, and after 2 seconds, it has traveled 41/3 meters. To find the change in momentum, the velocity at t=2 seconds must be calculated using integration, leading to the equation v(t) = -0.5t - (kt^2)/2 + 8. The momentum change is determined by applying the formula Δp = m[-5 - v(2)], confirming that the magnitude of the momentum change is 2 Ns.
Shah 72
MHB
Messages
274
Reaction score
0
A hockey ball of mass 0.2kg is hit so that its initial speed is 8 m/s. The ball travels in a horizontal straight line with acceleration given by a= - 0.5- kt where t is the time in seconds measured from when the ball was hit. After 2s the ball has traveled 41/3 m. It is then intercepted by a players from the other team. This player hits the ball so that its direction of travel is reversed and its speed is now 5 m/s. Show that when the ball is hit by the second player it's momentum changes in magnitude by 2 Ns
 
Mathematics news on Phys.org
Integrate the above expression to get velocity at t=2 sec and then apply $m(-5 ) - m(v_{t=2})$ assuming ball is traveling in positive x- direction initially.
 
DaalChawal said:
Integrate the above expression to get velocity at t=2 sec and then apply $m(-5 ) - m(v_{t=2})$ assuming ball is traveling in positive x- direction initially.
So after integrate I get v= -0.5t- kt^2/2 +c
When t=0, v= 8m/s
So v= -0.5t -kt^2/2+8
 
DaalChawal said:
Integrate the above expression to get velocity at t=2 sec and then apply $m(-5 ) - m(v_{t=2})$ assuming ball is traveling in positive x- direction initially.
I don't understand how to calculate after this
 
$v(t) = -0.5t - \dfrac{kt^2}{2} + 8$

$\displaystyle \int_0^2 v(t) \, dt = \dfrac{41}{3}$

evaluate the integral, solve for $k$, then determine the value of $v(2)$

$\Delta \vec{p} = m[-5 - v(2)]$
 
skeeter said:
$v(t) = -0.5t - \dfrac{kt^2}{2} + 8$

$\displaystyle \int_0^2 v(t) \, dt = \dfrac{41}{3}$

evaluate the integral, solve for $k$, then determine the value of $v(2)$

$\Delta \vec{p} = m[-5 - v(2)]$
Thank you very much!