Most probable energy and speed for Maxwell-Boltzmann distribution

Click For Summary
SUMMARY

The discussion focuses on the Maxwell-Boltzmann distribution, specifically the expressions for the probability of particle speed and energy. The most probable speed is defined as \( v = \sqrt{2kT/m} \), while the corresponding energy is \( E = kT \). The discrepancy between the most probable energy \( E = kT/2 \) and the speed arises from the non-linear relationship between energy and speed, which affects how probabilities are calculated over finite ranges. The conversation emphasizes that the choice of measurement bins (equal widths in speed vs. energy) significantly influences the interpretation of these probabilities.

PREREQUISITES
  • Understanding of Maxwell-Boltzmann distribution
  • Familiarity with kinetic energy equations, specifically \( E = mv^2/2 \)
  • Knowledge of statistical mechanics concepts, including probability density functions
  • Basic grasp of the equipartition theorem
NEXT STEPS
  • Explore the implications of non-linear transformations in probability distributions
  • Study the equipartition theorem in greater detail
  • Learn about statistical mechanics and its applications in thermodynamics
  • Investigate the effects of different measurement binning techniques on data interpretation
USEFUL FOR

Students and professionals in physics, particularly those studying thermodynamics and statistical mechanics, as well as researchers analyzing particle behavior in gases.

addaF
Messages
5
Reaction score
0
I just recall the two expression for the Maxwell-Boltzmann distribution:
$$ P(v)dv = \left( \dfrac{m}{2 \pi k T} \right)^{3/2} 4 \pi v^2 \exp \left(- \dfrac{mv^2}{kT} \right) dv \qquad P(E)dE = \left( \dfrac{4E}{\pi} \right)^{1/2} \dfrac{e^{-E/kT}}{\left( kT \right)^{3/2}} dE$$
The left expression gives the probability to have the particle with speed in the range ## [v,v+dv] ##, while the right one gives the probability to have an energy in the range ##[E,E+dE]##. I'm now struggling a bit to find a physical reason for the following fact:
the most probable speed is ## v = \sqrt{2kT/m}## and the corresponding energy is ##E = kT##; the most probable energy is ##E = kT/2##. The mathematical reason is clear: the change of variable is not linear. However (now) the difference between the two energies seems a bit illogical to me, and I'm trying to find a physical reason for this but i cannot figure out. Can anyone help me?
Thank you in advance

Edit: I forgot to say it, i assume ##E## as the classical kinetic energy, namely ##E = mv^2 / 2##
 
Last edited:
Physics news on Phys.org
Physically, there is no such thing as the most probable energy or speed, because these are continuous not discrete variables. The probability of having exactly a specified speed, e.g. exactly 1000 m/s, is vanishingly small. Probability must be evaluated over a finite range dv or dE. Now if you make all your speed slices of the same width dv, the maximum probability is at the maximum of the probability density function P(v). Similarly for equal widths dE, the maximum probability is at the maximum of the function P(E). But since dE and dv are not linearly related, you can't simultaneously have your slices of equal dv and equal dE. If they are of equal dv, then dE increases with E, and P(E)dE is not proportional to P(E), so its maximum doesn't occur at the maximum of P(E).
 
mjc123 said:
Physically, there is no such thing as the most probable energy or speed, because these are continuous not discrete variables. The probability of having exactly a specified speed, e.g. exactly 1000 m/s, is vanishingly small. Probability must be evaluated over a finite range dv or dE. Now if you make all your speed slices of the same width dv, the maximum probability is at the maximum of the probability density function P(v). Similarly for equal widths dE, the maximum probability is at the maximum of the function P(E). But since dE and dv are not linearly related, you can't simultaneously have your slices of equal dv and equal dE. If they are of equal dv, then dE increases with E, and P(E)dE is not proportional to P(E), so its maximum doesn't occur at the maximum of P(E).

For simplicity I'm thinking to an unidimensional gas with a temperature ##T##. For what we said i expect that, on average, the particles moves at ##v = \sqrt{2 kT /M}## which is also called thermal velocity. But from equipartition theorem, since i have only one dimension, i also expect that the average energy is ##E = kT/2##, which is precisely the average energy given by the MB distribution.

Your answer makes perfectly sense, but it strictly refers to the change of variables. But if i physically measure the velocity and energy of such particles, supposing to make a large amount of measurements, why should i find such "discrepancy"?
 
The discrepancy isn't physical, it's mathematical. It's about how you treat your measurements. Do you put them in "bins" of equal dv width, or of equal dE width? You will get a different answer in each case for what is "most probable".
 
  • Like
Likes   Reactions: vanhees71 and Ibix
As I did not fully understand the explanation with the "bins" I did some further research and eventually understood the concept. As such I thought to come back and try to explain it in other words. I have 2 methods how one could look at it.

The bins that are mentioned in previous answers refer to dE and dv. As E=mv^2/2, one can easily see that a constant splitting up an energy range in equal dE's and then converting it to a speed range would not result in equal dv's because a infinitisimal range dE corresponds to a smaller infinitisimal range dv if it is located at a higher E (eg E(0-1J)->v(0-1m/s) while E(100-101)->v(10-10,04m/s) for 2kg). As such, the 'bins' for both cases have different sizes depending on where they are located.

The difference between the 'most probable' points is because the scale of the x-axis is different. This concept can be explained with the following thought experiment:
Assume that there is an uniform distribution between 0 and 100 for a certain variable t. By plotting this probability density distribution on an x1-axis where x1 = t, a constant line between 0 and 100 is found. However when one would plot the probability density distribution on an x2-axis where x2=t^2, a rising quadratic function between x2=0 and x2=10 is found. As such, looking at these probability density distributions,the most probable point for x2=10 and one would assume that the most probable point for t is thus at t = 100. This is however not correct for the variable t as the probabiltiy for t is uniform. This thought experiment indicates how the choice of variable can seemingly influence the most probable point.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 5 ·
Replies
5
Views
767
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K