Moving bar enclosing a changing magnetic field generates a current

Click For Summary

Homework Help Overview

The discussion revolves around a problem involving electromagnetic induction, specifically focusing on a moving bar within a changing magnetic field and the resulting current generation. Participants are analyzing the relationship between magnetic flux, current, and the forces acting on the bar, with an emphasis on the dynamics of the system.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants are attempting to derive expressions for magnetic flux and current based on the changing magnetic field. Questions arise regarding the dependency of current on velocity and the need to solve differential equations. Some participants express uncertainty about their approach and seek clarification on the relationships between variables.

Discussion Status

The discussion is active, with participants providing insights into the mathematical relationships involved. Some guidance has been offered regarding the use of Newton's second law and methods for solving the differential equations. There is an ongoing exploration of how to express current as a function of velocity.

Contextual Notes

Participants note that the acceleration is not constant and that the magnetic field depends on the position of the bar. There is a mention of potential missing information in the problem setup, which may affect the analysis.

besebenomo
Messages
11
Reaction score
1
Homework Statement
A circuit with resistance R, a moving bar of lenght l and mass m has initial velocity along the x-axis = -v and at t=0 the bar is in position x=2l. The circuit lays in a region with depending on the x-coordinate. Find the current flowing in the circuit.
Relevant Equations
Faraday's law
The amplitude of ##\vec{B}## is given by:
$$B(x) = B_{0} - B_{0} \frac{x}{2l}$$ for ##0 \leq 0 \leq 2l##
Immagine 2022-09-03 113102.png


This was my attempts at finding the flux of B:

$$\Phi(B) = (B_{0} - B_{0} \frac{x}{2l})(2l-x(t))l = B_{0}2l^2-2B_{0}x(t)l+ B_{0}\frac{x(t)^2}{2}$$

and the current: $$ i = -\frac{d \Phi(B)}{dt} \frac{1}{R} = -\frac{B_{0} v(t) (2l -x(t))}{R}$$

Is this approach correct?
 
Physics news on Phys.org
besebenomo said:
Is this approach correct?
The current depends on the velocity, so you will have to find that first. I would start with $$I=-\frac{1}{R}\frac{d\Phi}{dt}=-\frac{1}{R}\frac{d(BA)}{dt}$$then use the magnetic force $$\mathbf{F}_M=I\mathbf{L}\times\mathbf{B}$$in Newton's second law. The acceleration is not constant. You will have to solve a differential equation.
besebenomo said:
The circuit lays in a region with depending on the x-coordinate.
Is something missing from this sentence?
 
Last edited:
  • Like
Likes   Reactions: besebenomo
kuruman said:
Is something missing from this sentence?
Yes sorry, I meant B is depending on the x-coordinate.
kuruman said:
he acceleration is not constant. You will have to solve a differential equation.
Yes, I know. The problem is that I am not used to solving differential equation when also ##x(t)## is the equation... Is there any way I can rewrite ##i## as a function of only ##v(t)##? That way would be so much easier to solve. Maybe I did something wrong when I computed the flux?
 
You need to write Newton's second law and bring the mass in the equation. What is the net force acting on the bar?
 
  • Like
Likes   Reactions: besebenomo
kuruman said:
You need to write Newton's second law and bring the mass in the equation. What is the net force acting on the bar?
The force acting on the bar is the magnetic force, in this case: $$\vec{F}_{mag} = i \vec{l}\times \vec{B} = - \frac{-B_{0} v(t) (2l-x(t)) l}{R} (B_{0} - B_{0} \frac{x(t)}{2l})$$
Then I solve the differential equation, if I didn't make mistakes along the way:
$$m \frac{dv(t)}{dt} = - \frac{-B_{0} v(t) (2l-x(t)) l}{R} (B_{0} - B_{0} \frac{x(t)}{2l}) = - \frac{B_{0}^2 v(t) (2l^2+ \frac{1}{2}x(t)^2)}{R}$$
$$\Longrightarrow \frac{dv(t)}{v(t)} = -\frac{B_{0}^2}{mR}2l^2 dt -\frac{B_{0}^2}{2mR} x(t)^2 dt$$

This is where I get stuck, if there wasn't the second term to the right I would just integrate but I don't really know what to do in this case. That's why I was thinking I did make a mistake in the conceptualization of the problem
 
A useful method for handling this (some people call it a trick, I call it the chain rule of differentiation) is this
$$a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}$$ It allows you to separate variables with ##v(x)## on one side and ##x## on the other. Then you integrate. No variable ##t## anywhere.
 
  • Like
Likes   Reactions: besebenomo
kuruman said:
A useful method for handling this (some people call it a trick, I call it the chain rule of differentiation) is this
$$a=\frac{dv}{dt}=\frac{dv}{dx}\frac{dx}{dt}=v\frac{dv}{dx}$$ It allows you to separate variables with ##v(x)## on one side and ##x## on the other. Then you integrate. No variable ##t## anywhere.
Thanks a lot you've been really helpful!
 
  • Like
Likes   Reactions: berkeman

Similar threads

Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
936
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K