Moving charges in a moving frame of reference

Click For Summary

Discussion Overview

The discussion revolves around the behavior of moving charges in different frames of reference, particularly focusing on the forces experienced by charged bodies at rest versus those in motion. Participants explore the implications of relativistic effects on electric and magnetic forces, the concept of four-force, and the challenges posed by measuring forces with instruments like dynamometers.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that the forces experienced by two charged bodies differ in moving frames, leading to the conclusion that forces are not the same in both frames of reference.
  • There is mention of a relativistic generalization of force known as the four-force, which is claimed to be invariant across all frames, including non-inertial ones.
  • Questions arise regarding the application of formulas for transforming electric and magnetic fields between frames, with some participants expressing uncertainty about their correctness.
  • Participants discuss the implications of attaching a dynamometer between moving charges, leading to confusion about the readings it would provide depending on the frame of reference.
  • One participant introduces the idea of a "relativity paradox" related to measuring forces between moving bodies and the effects of simultaneity.
  • There is speculation about the conditions under which a string connecting charged bodies would break, depending on their relative motion and the frame of reference.

Areas of Agreement / Disagreement

Participants generally agree that forces differ in moving frames, but there is no consensus on the implications of using dynamometers or the correct application of field transformation formulas. The discussion remains unresolved regarding the specific outcomes of measuring forces in different configurations.

Contextual Notes

Limitations include the complexity of relativistic effects on forces, the dependence on definitions of frames, and the unresolved nature of certain mathematical transformations. The discussion also highlights the challenges of measuring forces in relativistic contexts.

  • #61
Let F be the magnitude of the four force, then:
olgerm said:
Tester on Earth would say that breaking string in spacecraft would take smaller force than to break the string on Earth.
Tester on Earth would saybthst breaking string in spacecraft would take the same F as to break the string on earth.

olgerm said:
Tester on Earth would say pullingmachine in spacecraft applied smaller force than the machine on Earth.
Tester on Earth would say pulling machine in spacecraft applied the same F as the machine in earth.

olgerm said:
Tester in spacecraft would say that breaking string on Earth would take smaller force than to break the string in spacecraft .
Tester in spacecraft would say that breaking string on Earth would take the same F as breaking the string in spacecraft .

olgerm said:
Tester in spacecraft would say pullingmachine on Earth applied smaller force than the machine in spacecraft .
Tester in spacecraft would say pulling machine on Earth applied same F as the machine in spacecraft .

olgerm said:
Tester on Earth would say that breaking string in spacecraft would take 1-v^2/c^2 times smaller force than to break the string on earth.
Tester on Earth would say that breaking string in spacecraft would take same F as to break string on earth.

olgerm said:
Tester on Earth would say pullingmachine in spacecraft applied 1-v^2/c^2 times smaller force than the machine on earth.
Tester on Earth would say pulling machine in spacecraft applied same force as the machine on earth.

olgerm said:
testers would not need to convert forces if they view strings and the machines as collection of pointcharges that are tied to each other with chemical bond, and are interacting with force F=q∗(E+v∗B), because E,v and B are different in their frames of reference
testers would not need to convert forces if they use four-forces
 
  • Like
Likes   Reactions: olgerm
Physics news on Phys.org
  • #62
Thanks very much for explaining this to me. I had previously tried to find answer to this question from various sources outside of PhysicsForums and the asked question from many people, but never got clear answer.
 
Last edited:
  • #63
olgerm said:
Some source said that I should use relation
##E_2=E_1+v \times B_1##
##B_2=B_1-v/c^2\times E_1##
but that would mean that ##E_2\not=\frac{q*k_q}{r^2}## Is it correct? Does that mean that there is free electromagnetic field(electromagnetic wave(s)) in second frame of reference?
Dale said:
I don’t know of the top of my head. I would have to look them up.
I found it now. https://en.wikipedia.org/wiki/Class...al_relativity#Non-relativistic_approximations. Seems that the problem can be solved with nonrelativistic physics.
But still does it mean that ##E_2\not=\frac{q*k_q}{r^2}## in some cases. for example if the bodies are moving with speed v in 1. frame of reference and with speed -v in 2. frame of reference?
 
Last edited:
  • #64
olgerm said:
I found it now. https://en.wikipedia.org/wiki/Class...al_relativity#Non-relativistic_approximations. Seems that the problem can be solved with nonrelativistic physics.
But still does it mean that ##E_2\not=\frac{q*k_q}{r^2}## in some cases.
Most likely yes. Approximations are often wrong. That is why they are approximations.

However, I must say that I don’t understand your persistent desire to do things the hard way with inaccurate approximations that are complicated and frame variant, when you could instead use the exact quantity in the four-vector formulation which is easy and covariant. Why do you insist on doing it the hard way?
 
  • #65
olgerm said:
But still does it mean that E2≠q∗kqr2E_2\not=\frac{q*k_q}{r^2} in some cases. for example if the bodies are moving with speed v in 1. frame of reference and with speed -v in 2. frame of reference?

Is v << c ?

Anyway, there is a (slowly) moving magnet in one frame.

If the magnetic field of the magnet is B and the velocity of the magnet is v, then

there is an Electric field E around the moving magnet: ##E=v \times B ##

So a still standing charge q feels a force: ##F=q*v\times B##

What is this called? Induction? The v refers to the velocity of a magnet.In another frame there is a charge moving in a magnetic field of a still standing magnet. There is a force on the charge: ##F=q*v \times B##

That force is called Lorentz force, and it's a magnetic force, right? The v refers to the velocity of a charge.
The two frames agree about q and B and the magnitude of v. So the two frames seem to disagree about the direction of the force. o_O

Okay, so it must be so that the v refers to the velocity of an observer relative to a magnet, not "the velocity of a magnet", as I said.
 
Last edited:
  • #66
Dale said:
Most likely yes. Approximations are often wrong. That is why they are approximations.
However, I must say that I don’t understand your persistent desire to do things the hard way with inaccurate approximations that are complicated and frame variant
I desire to understand whether maxwells equations are compatible with classic physics.
These equations where on wikipedia do not seem just approximations, but are straightly unsound, because:
##div(\vec{E_1})=q/\epsilon_0##
##\vec{E_2}=\vec{E_1}+v\times B##
##div(\vec{E_2})=q/\epsilon_0##
##\vec{B_1}=\frac{\mu_0*q*v\times r}{4*\pi*|r|^3}##
to
##div(\vec{E_1}+v\times \frac{\mu_0*q*v \times r}{4*\pi*|r|^3})=div(\vec{E_1})##
if r is crosswise to v
##div(\vec{E_1}*(1+\frac{\mu_0*q*|v|^2}{4*\pi*|r|^2*|E_1|}))=div(\vec{E_1})##
to
##\mu_0*q*|v|^2=-4*\pi*|r|^2*|E_1|##
to
##\mu_0*q*|v|^2=-4*\pi*|r|^2*\frac{q}{4*\pi*\epsilon_0}##
to
##|v|^2=-|r|^2*c^2## which is not True for all v and all r.
 
Last edited:
  • #67
olgerm said:
I desire to understand whether maxwells equations are compatible with classic physics.
Maxwell’s equations are fully relativistic. They are not compatible with the Galilean transform.
 

Similar threads

Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K