MPPT analysis in parallel and series configration with similar solar modules

Click For Summary
SUMMARY

The discussion focuses on the performance analysis of Maximum Power Point Trackers (MPPT) when using two solar modules rated at 85W, with specific parameters including Voc of 21.96V and Isc of 5.11A. Participants emphasize the benefits of connecting solar panels in series versus parallel configurations, highlighting that series connections can reduce current and minimize losses due to partial shading. Additionally, it is noted that for a 12V battery system, having a higher voltage from the solar panels is advantageous for efficient MPPT operation. The consensus is that series configurations generally provide better efficiency under certain conditions.

PREREQUISITES
  • Understanding of Maximum Power Point Tracking (MPPT) technology
  • Knowledge of solar module specifications and ratings
  • Familiarity with electrical concepts related to series and parallel circuits
  • Basic principles of photovoltaic system design
NEXT STEPS
  • Research the efficiency metrics of MPPT controllers in solar applications
  • Explore the impact of partial shading on solar panel performance
  • Learn about the design considerations for solar panel configurations
  • Investigate the voltage and current characteristics of solar modules in series and parallel
USEFUL FOR

Solar energy enthusiasts, photovoltaic system designers, electrical engineers, and anyone involved in optimizing solar panel configurations for maximum efficiency.

zubairmehmood
Messages
4
Reaction score
0
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.
 
Engineering news on Phys.org
zubairmehmood said:
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.

Welcome to the PF!

There is a short introductory article at wikipedia, with a couple reference links to follow:

http://en.wikipedia.org/wiki/Maximum_power_point_tracker

.
 
dear berkeman thanks for your quick response. in fact i want to know what will be the benefit of analyzing the two panels in series and parallel configurations because we know that whenever these panels will be connected in parallel the current will increase and voltages will remain same and in series I is same V will increase as it is a general rule. I am a newbie in this solar field i have understood that the configuration which provide you more current flow is efficient (your comments needed). what can be the other efficiency parameters that can be measured with series parallel configuration in which efficiency can be better in other case.

thanks
 
If your battery is 12 Volts, it is usually better to have at least twice the nominal (12V)
voltage rating of photovoltaics (Solar panels) coming into the MPPT controller.
This is because the Vmp of the modules can get so close to the battery voltage
that there is just not much voltage headroom to do much good. Also, there will
be less PV wire losses because of the lower current, and mainly because
partial shading of the modules in series will not be as detrimental as wiring
them in parallel because even if partially shaded, the Vmp (max power point V)
will be above the battery voltage which is normally required for MPPT operation.
If the Vmp is below the battery voltage, then it just doesn't work very well at all.
Wiring PV in series will help this. Even though the MPPT controller is less
efficient at higher input voltages, the tradeoff is usually in your favor to wire
them in series rather than parallel. If lots of PV in the array, then, parallel
strings of solar modules in series.

boB
 

Similar threads

  • · Replies 31 ·
2
Replies
31
Views
5K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K