MPPT analysis in parallel and series configration with similar solar modules

AI Thread Summary
The discussion focuses on analyzing the performance of Maximum Power Point Trackers (MPPT) with two solar modules rated at 85W. The user seeks guidance on the benefits and methodologies for connecting the modules in series versus parallel configurations. It is noted that connecting in parallel increases current while maintaining voltage, whereas series connections increase voltage with constant current. The efficiency of configurations is influenced by factors like battery voltage compatibility and the impact of partial shading, with series connections generally offering advantages in these scenarios. Overall, the choice of configuration can significantly affect the efficiency and performance of solar energy systems.
zubairmehmood
Messages
4
Reaction score
0
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.
 
Engineering news on Phys.org
zubairmehmood said:
hello!
Hope you all will be at quiet ease.
I am looking for the guidance to observe the performance analysis of MPPT (Maximum power point Tracker) in parallel and series configuration with similar solar modules. I have two solar modules each having the following rating:

- Maximum power (PMax) = 85W
- Open Circuit Voltage (Voc) = 21.96V
- Short Circuit Current (Isc) = 5.11A
- Rated voltage (Vmpp) = 18.29V
- Rated Current (Impp) = 4.65A
- Maximum System voltage = 1000V

Can anyone of you help in this regard that what methodology should be adopted and what parameters are required to be calculated for above said task.

Thanking you in anticipation.

Welcome to the PF!

There is a short introductory article at wikipedia, with a couple reference links to follow:

http://en.wikipedia.org/wiki/Maximum_power_point_tracker

.
 
dear berkeman thanks for your quick response. in fact i want to know what will be the benefit of analyzing the two panels in series and parallel configurations because we know that whenever these panels will be connected in parallel the current will increase and voltages will remain same and in series I is same V will increase as it is a general rule. I am a newbie in this solar field i have understood that the configuration which provide you more current flow is efficient (your comments needed). what can be the other efficiency parameters that can be measured with series parallel configuration in which efficiency can be better in other case.

thanks
 
If your battery is 12 Volts, it is usually better to have at least twice the nominal (12V)
voltage rating of photovoltaics (Solar panels) coming into the MPPT controller.
This is because the Vmp of the modules can get so close to the battery voltage
that there is just not much voltage headroom to do much good. Also, there will
be less PV wire losses because of the lower current, and mainly because
partial shading of the modules in series will not be as detrimental as wiring
them in parallel because even if partially shaded, the Vmp (max power point V)
will be above the battery voltage which is normally required for MPPT operation.
If the Vmp is below the battery voltage, then it just doesn't work very well at all.
Wiring PV in series will help this. Even though the MPPT controller is less
efficient at higher input voltages, the tradeoff is usually in your favor to wire
them in series rather than parallel. If lots of PV in the array, then, parallel
strings of solar modules in series.

boB
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top