1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Multivariable Calculus book for a Physics major

  1. Sep 12, 2009 #1
    Hi everybody.

    I'm currently taking Calculus III with applications, and the book they gave us was Multivariable Calculus by Ron Larson. I wanted to Calc III, which is more pure math as opposed to the class I'm in thats mostly for engineers (theres a third class oriented even more for applications, but that was ruled out), but it conflicted with my physics class, which obviously has priority. I was wondering If this textbook is any good or should I look for another textbook more oriented towards physicists and pure math? I'm not exactly sure what audience the textbook was written for (applied vs. pure).
  2. jcsd
  3. Sep 12, 2009 #2
    I liked the Larson book for Calc I and II but I cannot tell for Calc III. I used Stewart (other than the recommended text) and loved it!

    P.S. I am in Engineering
  4. Sep 12, 2009 #3
    I have heard that the calc texts by Larson are not that bad. As for the pure vs. applied thing, I'm not quite sure. I think the text would be similar to that of Stewarts, which doesn't really seem like more "engineer oriented" or anything (there will be problems of both flavor). But I guess purity also depends on rigor, but this is probably best saved for later. Many people study analysis after calc III, and manifolds usually comes later, so it's probably best to save a thoroughly rigorous treatment of the subject for later. Bottomline is I think you could get a lot out of this text.
  5. Sep 12, 2009 #4


    User Avatar
    Science Advisor

    The text Vector Calculus by Marsden and Tromba is pretty good, I studied my way through it over the summer. It provides a more mathematical foundation for some of the concepts, while still giving a lot of good example problems. Plus, you can get a used copy of the fourth edition (just as good as the fifth for self study) for as low as $4 on amazon!
  6. Sep 12, 2009 #5
    Last edited by a moderator: Apr 24, 2017
  7. Sep 12, 2009 #6
    It's good to hear the Larson book is pretty good for MV. Last thing i need when i take more pure math classes is trouble catching up. I may take more applied later, depending interests and that stuff.

    I've heard the name Stewart pop up a lot so i guess i should look into that (any old copies or something at the library i guess)

    huh, i've heard of informal texts for physics, biology and the other sciences, but never for math (havent really looked either.) Figured there wasnt really a market for it, but i guess it always helps for students.

    you read my mind :smile:
  8. Sep 16, 2009 #7


    User Avatar
    Science Advisor
    Gold Member

    The book "vector calculus, linear algebra and differential forms" by hubbard and hubbard is really good, if you are willing to work hard. It is in the 3rd edition and is sold by a small book company (matrix editions, or somethign like that). It covers a year worth of material (linear algebra, sequences and series, multivariable calculus, manifolds, differential forms, Lebesgue integration in a different way than is usually taught, electrodynamics, etc.), but is really interesting and well written. Warning - this is only if you are quite serious about math! It is used in "honors" classes for this subject. Google will tell you where it is used. But don't despair, the hardest proofs are shoved in an appendix that is like 100 pages long!

    I have the 2nd edition checked out from the library, and it is really really good.

    I learned multivariable calc from Thomas and Finney, and picked up additional stuff later on my own. It was adequate, but uninspiring. Yes, I took the "engineering math" sequence, as I am an engineer! The relationship between linear algebra and multivariable calculus is useful and fun.

  9. Sep 17, 2009 #8
    I second Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach by Hubbard. I am a graduate student in math wanting to relearn vector calculus, and this is the book I'm going to do it with. I haven't read the book yet, but I've browsed the http://matrixeditions.com/". The fantastic thing about the book is that it integrates the standard vector calculus approach with differential forms (the modern and higher level approach), which was exactly what I was looking for in a vector calculus book. I believe he even shows the usefulness of differential forms in dealing with Maxwell's equations. A physics major, especially one wanting to go to graduate school, could benefit greatly from this book.

    Also, the 4th edition is out, and is available on their ordering page.
    Last edited by a moderator: Apr 24, 2017
  10. Sep 17, 2009 #9
    Thanks for the info about "Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach by Hubbard". I looked it up online and it looks like a good book for vector calculus. I'll see if I can get it at my library or i might try buying it. From what I've read, and from what you've guys have said, it sounds interesting and difficult, which is of course a good combination!

    Anyway, I"ll look into the books and thanks for the advice!
  11. Sep 18, 2009 #10
    I think Zorik(from moskow state university,Russia)'s mathematical analysis is wonderful.
    And phichdingolzt's calculas 1,2,3 are also very good.
    They are all better than American's.
  12. Sep 18, 2009 #11
    A quick Google search turned up nothing for either of those books. Are they even in English or published books? Also, I don't think it's correct, not to mention polite, to make such a judgement as they are ''all better than American's". What does that even mean, and have you read the so-called American books? By the way, to my knowledge, John Hubbard, the author of the book mentioned above, is French. Calculas is also spelled calculus.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook