- #1
Granger
- 168
- 7
Homework Statement
Compute the work of the vector field ##F(x,y)=(\frac{y}{x^2+y^2},\frac{-x}{x^2+y^2})##
in the line segment that goes from (0,1) to (1,0).
Homework Equations
3. The Attempt at a Solution [/B]
My attempt (please let me know if there is an easier way to do this)
I applied Green's theorem in the region between the square of vertices (1,0), (0,1), (-1,0), (0,-1), and the circumference centered in the origin with radius 1/2, both clockwise.
Since both lines are clockwise, and because F is field of class ##C^1## then
##\int_C F = \int_S F## (C circumference and S square).
C is then described by the path ##\gamma=(\frac{\cos t}{2},\frac{-\sin t}{2}) t\in]0,2\pi[##
We have ##F(\gamma (t)) \gamma ´(t)=1## so ##\int_C F = 2\pi = \int_S F##
Now because we want only the work in the line segment that goes from (0,1) to (1,0) we divide our result by 4 and obtain ##\frac{\pi}{2}##My doubts here is if this is correct, especially the final step... I also wonder if there was an easier way to approach the problem. I first thought of applying the fundamental theorem of calculus but we can't because F is not conservative. Then I tried the definition but we end up with a hard integral to compute. So I ended up with this...
Thanks for the help.
Last edited by a moderator: