Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Multivariable function question

  1. May 31, 2007 #1
    hey,

    hope this is the right spot for this...

    im curious to know what Domain and Range refer to in a multvariable function. I understand what it means in a single variable (x is usually domain, y is usually range), but when it gets to Multivariable, it doesnt make sense to me. Domain seems to be the same, but what does Range refer to?

    Thanks:yuck:
     
  2. jcsd
  3. Jun 1, 2007 #2

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Even in a single variable function, x is not the domain and y is not the range. A function, in the most general sense, is an ordered triplet of sets (A, B, f) that we denote by f:A-->B, where f is some subset of A x B such that [itex]\forall a \in A, \exists !b\in B \ \mbox{such that} \ (a,b)\in f[/itex]. A is called the domain and B the codomain of the function. The range of the function is the subset of B denoted by f(A) and defined by [itex]f(A)=\{b\in B:\exists a\in A \ \mbox{with} \ (a,b)\in f\}[/itex].

    This definition however is not very easy to understand. It is easier to think of f not as a set but as a "rule" that associates to every a in A an unique b in B. If (a,b) is in f, we write f(a)=b. A is the domain, B is the codomain and the range f(A) is the set of all elements b of B for which there actually is an a in A such that f(a)=b.

    To give a concrete exemple in the case of a real function of several variables, consider [itex]f:\mathbb{R}^2\rightarrow \mathbb{R}[/itex] where the "rule of association" is [itex]f(x,y)=sin(xy)[/itex]. Then R² is the domain, R is the codomain and the range is [0,1].
     
    Last edited: Jun 1, 2007
  4. Jun 1, 2007 #3
    thanks!

    but, um... im gonna have to do some more reseach into this becuase I didnt really understand your answer
     
  5. Jun 1, 2007 #4

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Last edited: Jun 1, 2007
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Multivariable function question
  1. Multivariable Function (Replies: 2)

Loading...