Munkres-Analysis on Manifolds: Extended Integrals

Click For Summary

Discussion Overview

The discussion revolves around the concept of improper or extended integrals as introduced in Munkres' "Analysis on Manifolds." Participants explore the definition and properties of extended integrals over open sets, particularly focusing on the conditions under which the integral of a continuous non-negative function exists over an open set and how it relates to subsets of measure zero.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants describe the definition of extended integrals over open sets, emphasizing the role of compact rectifiable subsets and the supremum of integrals over these subsets.
  • There is a discussion about the claim that if a continuous function is integrated over an open set that is the union of a rectifiable set and a measure zero set, then the integral over the open set exists and equals the integral over the rectifiable set.
  • One participant argues that the integral of any function over a set of measure zero is zero, which leads to the conclusion that the supremum of integrals over the open set cannot exceed that of the rectifiable subset.
  • Another participant expresses uncertainty about how to prove the claim regarding the equality of integrals over the open set and the rectifiable subset, particularly when the function may not be bounded.
  • There is a side discussion regarding the appropriateness of sharing links to copyrighted materials in the forum.

Areas of Agreement / Disagreement

Participants express differing views on the proof of the claim regarding the equality of integrals over the open set and the rectifiable subset. The discussion remains unresolved, with no consensus reached on the proof or the implications of the definitions provided.

Contextual Notes

Participants note that the function may not be bounded over the open set, which adds complexity to the discussion of integrability and the existence of the extended integral.

Bill2500
Messages
10
Reaction score
2
I am studying Analysis on Manifolds by Munkres. He introduces improper/extended integrals over open set the following way: Let A be an open set in R^n; let f : A -> R be a continuous function. If f is non-negative on A, we define the (extended) integral of f over A, as the supremum of all the numbers "integral of f over D" , as D ranges over all compact rectifiable (boundary of D has measure 0) subsets of A, provided this supremum exists. In this case, we say that f is integrable over A (in the extended sense).

In section 17 example 4 he uses the change of variables theorem for extended integrals over open sets to calculate the integral of a continuous non-negative function f over an open circle of radius a (lets call it W). To do so, he uses polar coordinates and integrates the "polar coordinate" function g over U=(0,a)x(0,2π).

But g(U)=V={(x,y) in W| x<0 if y=0} which is a subset of W, different from W. So "the integral of f over V" exists. Finally because W-V has measure 0, he claims that "the integral of f over W" also exists and "the integral of f over W"="the integral of f over V" (these are extended integrals over open set).

I don't understand how I can prove the claim: If f is continuous and if W is open and it is the union of the open set V and a set E with measure 0 and the extended " integral of f over V" exists, then "the integral of f over W" exists and they are equal (especially since the function f may not be bounded over W).

Thank you in advance for any help!
 
Last edited:
Physics news on Phys.org
Bill2500 said:
I don't understand how I can prove the claim: If f is continuous and if W is open and it is the union of the open set V and a set E with measure 0 and the extended " integral of f over V" exists, then "the integral of f over W" exists and they are equal (especially since the function f may not be bounded over W).
The integral of any function over a set of measure zero is zero, see proof here. Hence the integral over any rectifiable subset of a set of measure zero must also be zero.

Since integrals on disjoint sets are additive, the complements and intersections of finite numbers of rectifiable sets are rectifiable, ##W=V\cup E##, V and E are disjoint, and V and E are both rectifiable, we can write an integral over any rectifiable subset of W as the integral over ##W\cap V## plus the integral over ##W\cap E##. The latter is always zero. So the supremum of integrals of rectifiable subsets of W cannot be greater than the supremum of integrals of rectifiable subsets of V.

Since any rectifiable subset of V is also a rectifiable subset of W, the opposite inequality also applies. So the two suprema are equal.

PS Are you sure that posting that link to an online copy of a textbook doesn't breach copyright rules? Unless you are very sure, I suggest removing the link, or requesting a moderator to do it if the post is no longer editable. It is OK to post images of a page or two, but generally posting a whole book will violate copyright.
 
  • Like
Likes   Reactions: Bill2500
andrewkirk said:
The integral of any function over a set of measure zero is zero, see proof here. Hence the integral over any rectifiable subset of a set of measure zero must also be zero.

Since integrals on disjoint sets are additive, the complements and intersections of finite numbers of rectifiable sets are rectifiable, ##W=V\cup E##, V and E are disjoint, and V and E are both rectifiable, we can write an integral over any rectifiable subset of W as the integral over ##W\cap V## plus the integral over ##W\cap E##. The latter is always zero. So the supremum of integrals of rectifiable subsets of W cannot be greater than the supremum of integrals of rectifiable subsets of V.

Since any rectifiable subset of V is also a rectifiable subset of W, the opposite inequality also applies. So the two suprema are equal.

PS Are you sure that posting that link to an online copy of a textbook doesn't breach copyright rules? Unless you are very sure, I suggest removing the link, or requesting a moderator to do it if the post is no longer editable. It is OK to post images of a page or two, but generally posting a whole book will violate copyright.
I don't know how I can upload a picture so I found a link of the book and included it.
 
Yes, it's not obvious, and I often forget how to do it. Fortunately, I had to do one just the other day, so I remember for now.

Two buttons to the right of the 'Post Reply' button is a button marked Upload. Click on that and it allows you to upload an image from your computer. It will then appear in the post. If you choose Thumbnail it will look small, but expand to full size when clicked. Otherwise it will always be fully expanded in your post. I feel the former is easier to read when referencing a text.
 
Bill2500 said:
I am studying Analysis on Manifolds by Munkres. He introduces improper/extended integrals over open set the following way: Let A be an open set in R^n; let f : A -> R be a continuous function. If f is non-negative on A, we define the (extended) integral of f over A, as the supremum of all the numbers "integral of f over D" , as D ranges over all compact rectifiable (boundary of D has measure 0) subsets of A, provided this supremum exists. In this case, we say that f is integrable over A (in the extended sense).

In section 17 example 4 he uses the change of variables theorem for extended integrals over open sets to calculate the integral of a continuous non-negative function f over an open circle of radius a (lets call it W). To do so, he uses polar coordinates and integrates the "polar coordinate" function g over U=(0,a)x(0,2π).

But g(U)=V={(x,y) in W| x<0 if y=0} which is a subset of W, different from W. So "the integral of f over V" exists. Finally because W-V has measure 0, he claims that "the integral of f over W" also exists and "the integral of f over W"="the integral of f over V" (these are extended integrals over open set).

I don't understand how I can prove the claim: If f is continuous and if W is open and it is the union of the open set V and a set E with measure 0 and the extended " integral of f over V" exists, then "the integral of f over W" exists and they are equal (especially since the function f may not be bounded over W).

Thank you in advance for any help!
extended.jpg
extended.jpg
 

Attachments

  • extended.jpg
    extended.jpg
    33.5 KB · Views: 645
Bill2500 said:
I am studying Analysis on Manifolds by Munkres. He introduces improper/extended integrals over open set the following way: Let A be an open set in R^n; let f : A -> R be a continuous function. If f is non-negative on A, we define the (extended) integral of f over A, as the supremum of all the numbers "integral of f over D" , as D ranges over all compact rectifiable (boundary of D has measure 0) subsets of A, provided this supremum exists. In this case, we say that f is integrable over A (in the extended sense).

In section 17 example 4 he uses the change of variables theorem for extended integrals over open sets to calculate the integral of a continuous non-negative function f over an open circle of radius a (lets call it W). To do so, he uses polar coordinates and integrates the "polar coordinate" function g over U=(0,a)x(0,2π).

But g(U)=V={(x,y) in W| x<0 if y=0} which is a subset of W, different from W. So "the integral of f over V" exists. Finally because W-V has measure 0, he claims that "the integral of f over W" also exists and "the integral of f over W"="the integral of f over V" (these are extended integrals over open set).

I don't understand how I can prove the claim: If f is continuous and if W is open and it is the union of the open set V and a set E with measure 0 and the extended " integral of f over V" exists, then "the integral of f over W" exists and they are equal (especially since the function f may not be bounded over W).

Thank you in advance for any help!
andrewkirk said:
Yes, it's not obvious, and I often forget how to do it. Fortunately, I had to do one just the other day, so I remember for now.

Two buttons to the right of the 'Post Reply' button is a button marked Upload. Click on that and it allows you to upload an image from your computer. It will then appear in the post. If you choose Thumbnail it will look small, but expand to full size when clicked. Otherwise it will always be fully expanded in your post. I feel the former is easier to read when referencing a text.
It does not add it to my post. Why?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K