Must all models of ZFC (in a standard formulation) be at least countable?

mpitluk
Messages
25
Reaction score
0
Must all models of ZFC (in a standard formulation) be at least countable?

Why I think this: there are countably many instances of Replacement, and so, if a model is to satisfy Replacement, it must have at least countably many satisfactions of it.

Does my question only apply to first-order formulations of ZFC, or are there second-order formulations of ZFC that can be finite?

Thanks.
 
Physics news on Phys.org
Yes, they're all at least countable, because they all have an empty set, a set containing just the empty set, a set containing just the set containing just the empty set, etc. Your argument using Replacement doesn't work, since there's no guarantee that two different instances of Replacement generate different sets.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top