friend said:
OK, how does this sound? If we integrate the path integral one more time, it should equal 1 since it's a Dirac delta function. Then the functional derivative of that should be zero, since the functional derivative of a constant is zero. This much is necessarily True... And then taking the functional derivative of that would probably create a factor consisting of the variation of the action. This would be required to be zero since nothing else could be set to zero.
As a brief introduction for purposes of context, functional derivatives are developed as follows:
Let \[<br />
S\left[ {x,y\left( x \right),z\left( x \right)} \right]<br />
\]<br /> be a functional of the functions y(x) and z(x).
Then this functional, S, can be expanded in a taylor series
\[<br />
S\left[ {x ,y_0(x) + h_y ,z_0(x) + h_z } \right] = \,S\left[ {x,y_0 ,z_0 } \right] + \frac{{\partial S}}{{\partial y}}|_{y_0 ,z_0 } h_y + \frac{{\partial S}}{{\partial z}}|_{y_0 ,z_0 } h_z + \frac{1}{{2!}}\left( {\frac{{\partial ^2 S}}{{\partial y^2 }}|_{y_0 ,z_0 } h_y ^2 + 2\frac{{\partial S}}{{\partial y}}\frac{{\partial S}}{{\partial z}}|_{y_0 ,z_0 } h_y h_z + \frac{{\partial ^2 S}}{{\partial z^2 }}|_{y_0 ,z_0 } h_z ^2 } \right) + ...<br />
\]<br />
Or the finite difference is
\[<br />
\Delta S = S\left[ {x,y + h_y ,z + h_z } \right] - S\left[ {x,y,z} \right] = \frac{{\partial S}}{{\partial y}}h_y + \frac{{\partial S}}{{\partial z}}h_z + \frac{1}{{2!}}\left( {\frac{{\partial ^2 S}}{{\partial y^2 }}h_y ^2 + 2\frac{{\partial S}}{{\partial y}}\frac{{\partial S}}{{\partial z}}h_y h_z + \frac{{\partial ^2 S}}{{\partial z^2 }}h_z ^2 } \right) + ...<br />
\]<br />
where it is understood that we evaluate S using the functions \[<br />
,y_0(x) ,z_0(x) <br />
\]<br />
We can change notation so that \[<br />
h_y = \delta y<br />
\]<br /> and \[<br />
h_z = \delta z<br />
\]<br /> and get
\[<br />
\begin{array}{l}\\ <br />
\Delta S = S\left[ {x,y + \delta y,z + \delta z } \right] - S\left[ {x,y,z} \right] = \frac{{\partial S}}{{\partial y}}\delta y + \frac{{\partial S}}{{\partial z}}\delta z + \frac{1}{{2!}}\left( {\frac{{\partial ^2 S}}{{\partial y^2 }}\left( {\delta y} \right)^2 + 2\frac{{\partial S}}{{\partial y}}\frac{{\partial S}}{{\partial z}}\delta y\delta z + \frac{{\partial ^2 S}}{{\partial z^2 }}\left( {\delta z} \right)^2 } \right) + ... \\ <br />
\end{array}<br />
\]<br />
The first variation of S, labeled \[<br />
\delta S<br />
\]<br /> , which is called the first functional derivative of S, is the linear part of the Taylor expansion, or
\[<br />
\delta S = \frac{{\partial S}}{{\partial y}}\delta y + \frac{{\partial S}}{{\partial z}}\delta z<br />
\]<br />
and the term with second power in \[<br />
\delta y<br />
\]<br /> and \[<br />
\delta z<br />
\]<br /> is called the second variation or second functional derivative, or
\[<br />
\delta ^2 S = \frac{{\partial ^2 S}}{{\partial y^2 }}\left( {\delta y} \right)^2 + 2\frac{{\partial S}}{{\partial y}}\frac{{\partial S}}{{\partial z}}\delta y\delta z + \frac{{\partial ^2 S}}{{\partial z^2 }}\left( {\delta z} \right)^2 <br />
\]<br />
and similarly for higher order variations, \[<br />
\delta ^3 S,\,\delta ^4 S,\,...<br />
\]<br />
And with this notation,
\[<br />
\Delta S = \delta S + \frac{1}{{2!}}\delta ^2 S + \frac{1}{{3!}}\delta ^3 S + ...<br />
\]<br />
What is \[<br />
\delta \left( {\delta S} \right)<br />
\]<br /> ?
\[<br />
\delta \left( {\delta S} \right) = \delta \left( {\frac{{\partial S}}{{\partial y}}\delta y + \frac{{\partial S}}{{\partial z}}\delta z} \right) = \frac{\partial }{{\partial y}}\left( {\frac{{\partial S}}{{\partial y}}\delta y + \frac{{\partial S}}{{\partial z}}\delta z} \right)\delta y + \frac{\partial }{{\partial z}}\left( {\frac{{\partial S}}{{\partial y}}\delta y + \frac{{\partial S}}{{\partial z}}\delta z} \right)\delta z<br />
\]<br />
\[<br />
= \left( {\frac{{\partial ^2 S}}{{\partial y^2 }}\delta y + \frac{{\partial S}}{{\partial y}}\frac{\partial }{{\partial y}}\left( {\delta y} \right) + \frac{{\partial ^2 S}}{{\partial y\partial z}}\delta z + \frac{{\partial S}}{{\partial z}}\frac{\partial }{{\partial y}}\left( {\delta z} \right)} \right)\delta y + \left( {\frac{{\partial ^2 S}}{{\partial z\partial y}}\delta y + \frac{{\partial S}}{{\partial y}}\frac{\partial }{{\partial z}}\left( {\delta y} \right) + \frac{{\partial ^2 S}}{{\partial z^2 }}\delta z + \frac{{\partial S}}{{\partial z}}\frac{\partial }{{\partial z}}\left( {\delta z} \right)} \right)\delta z<br />
\]<br />
But y(x) and z(x) do not depend on one another, so terms like \[<br />
{\frac{\partial }{{\partial y}}\left( {\delta z} \right)}<br />
\]<br /> are obviously zero.
And with terms like \[<br />
{\frac{\partial }{{\partial y}}\left( {\delta y} \right)}<br />
\]<br /> we have that \[<br />
{\delta y}<br />
\]<br /> is a function of x and is independent of y. So they go to zero as well. What is left is
\[<br />
\delta \left( {\delta S} \right) = \frac{{\partial ^2 S}}{{\partial y^2 }}\left( {\delta y} \right)^2 + \frac{{\partial ^2 S}}{{\partial y\partial z}}\delta y\delta z + \frac{{\partial ^2 S}}{{\partial z\partial y}}\delta y\delta z + \frac{{\partial ^2 S}}{{\partial z^2 }}\left( {\delta z} \right)^2 = \frac{{\partial ^2 S}}{{\partial y^2 }}\left( {\delta y} \right)^2 + 2\frac{{\partial ^2 S}}{{\partial y\partial z}}\delta y\delta z + \frac{{\partial ^2 S}}{{\partial z^2 }}\left( {\delta z} \right)^2 <br />
\]<br />
But this last part was exactly how \[<br />
\delta ^2 S<br />
\]<br /> was defined. So we have
\[<br />
\delta \left( {\delta S} \right) = \delta ^2 S<br />
\]<br />
Now if,
\[<br />
S\left[ {x,y\left( x \right),z\left( x \right)} \right] = dF\left[ {x,y\left( x \right),z\left( x \right)} \right]<br />
\]<br />
then,
\[<br />
\Delta S\left[ {x,y\left( x \right),z\left( x \right)} \right] = S\left[ {x,y + \delta y,z + \delta z} \right] - S\left[ {x,y,z} \right] = \Delta dF\left[ {x,y\left( x \right),z\left( x \right)} \right]<br />
\]<br />
\[<br />
= dF\left[ {x,y + \delta y,z + \delta z} \right] - dF\left[ {x,y\left( x \right),z\left( x \right)} \right] = d\left( {F\left[ {x,y + \delta y,z + \delta z} \right] - F\left[ {x,y\left( x \right),z\left( x \right)} \right]} \right) = d\Delta F\left[ {x,y\left( x \right),z\left( x \right)} \right]<br />
\]<br />
So that,
\[<br />
\Delta d = d\Delta <br />
\]<br />
\[<br />
\Delta <br />
\]<br /> commutes with \[<br />
d<br />
\]<br />
Then,
\[<br />
\Delta dF = \delta \left( {dF} \right) + \frac{1}{{2!}}\delta ^2 \left( {dF} \right) + \frac{1}{{3!}}\delta ^3 \left( {dF} \right) + ... = d\left( {\delta F + \frac{1}{{2!}}\delta ^2 F + \frac{1}{{3!}}\delta ^3 F + ...} \right) = d\delta F + \frac{1}{{2!}}d\delta ^2 F + ...<br />
\]<br />
And keeping only the first approximation linear terms on both sides of the equation,
\[<br />
\delta d = d\delta <br />
\]<br />
\[<br />
\delta <br />
\]<br /> commutes with \[<br />
d<br />
\]<br />
And if
\[<br />
S\left[ {x,y\left( x \right),z\left( x \right)} \right] = \int_a^b {L\left[ {x,y\left( x \right),z\left( x \right)} \right]} \,dx<br />
\]<br />
Then
\[<br />
\Delta S = S\left[ {x,y + \delta y,z + \delta z} \right] - S\left[ {x,y,z} \right] = \int_a^b {L\left[ {x,y + \delta y,z + \delta z} \right]} \,dx - \int_a^b {L\left[ {x,y,z} \right]} \,dx = \Delta \int_a^b {L\left[ {x,y,z} \right]} \,dx<br />
\]<br />
\[<br />
= \int_a^b {L\left[ {x,y + \delta y,z + \delta z} \right] - L\left[ {x,y,z} \right]} \,dx = \int_a^b {\Delta L\left[ {x,y,z} \right]} \,dx<br />
\]<br />
So we see here that \[<br />
\Delta <br />
\]<br /> commutes with \[<br />
\int {} <br />
\]<br />
But also,
\[<br />
\Delta S = \delta S + \frac{1}{{2!}}\delta ^2 S + ... = \delta \left( {\int_a^b L \,dx} \right) + \frac{1}{{2!}}\delta ^2 \left( {\int_a^b L \,dx} \right) + ...<br />
\]<br />
\[<br />
= \int_a^b {\Delta L} \,dx = \int_a^b {\delta L + \frac{1}{{2!}}\delta ^2 L + ...} \,dx = \int_a^b {\delta L\,dx + \frac{1}{{2!}}\int_a^b {\delta ^2 L\,dx + ...} } <br />
\]<br />
Then keeping first approximation linear terms on each side of the equation we see
\[<br />
\delta \int_a^b L \,dx = \int_a^b {\delta L\,dx} <br />
\]<br />
Or, \[<br />
\delta \,\,\,{\rm{commutes}}\,\,{\rm{with}}\,\,\,\int {} <br />
\]<br />
Many text use the integral definition of a functional, \[<br />
S = \int {L\,dx} <br />
\]<br /> in its development. I suppose they do this because it makes it easier to justify taking only the linear terms inside the integral since differentials approach zero more naturally in the process of integration.
It's easy to see that variation commutes with any number of integral signs since a difference outside the integral is translated to a difference inside the integral signs. Or,
\[<br />
\Delta \int {\int {...\int {L\left[ {x,y,z} \right]} } } dx_1 dx_2 ...dx_n = \Delta \int {d[x]} L\left[ {x,y,z} \right]<br />
\]<br />
\[<br />
= \int {d[x]} L\left[ {x,y + \delta y,z + \delta z} \right] - \int {d[x]} L\left[ {x,y,z} \right] = \int {d[x]\left( {L\left[ {x,y + \delta y,z + \delta z} \right] - L\left[ {x,y,z} \right]} \right)} = \int {d[x]\Delta L\left[ {x,y,z} \right]} <br />
\]<br />
So following a similar procedure of keeping only linear terms,
\[<br />
\delta \int {d[x]\,L = \int {d[x]\delta L} } <br />
\]<br />
This means that the variation of the integration of the path integral gets passed inside all the infinite number of integrations to taking the variation of the exponent of the action.