MHB Myles's question at Yahoo Answers (Domain and range)

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Please show all the steps to how you get the answers. I would like to learn how you got to the final result.

Here is a link to the question:

Find the domain and range of f(x)= (e^x)/(1+2e^x)? - Yahoo! AnswersI have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Myles,

For all $x\in\mathbb{R}$ there exist $e^x$ and $e^{2x}$. Besides, $1+e^{2x}>0$ so the quotient exists for all $x\in \mathbb{R}$. as a consequence $$\boxed{\;\mbox{Dom }(f)=\mathbb{R}\;}$$ Clearly $f(x)>0$ in $\mathbb{R}$ and we are going to study the variation of $f$: $$\lim_{x\to +\infty}f(x)=\lim_{x\to +\infty}\frac{e^x}{1+e^{2x}}=\lim_{x\to +\infty}\frac{e^{-x}}{e^{-2x}+1}=\frac{0}{0+1}=0\\\lim_{x\to -\infty}f(x)=\lim_{x\to -\infty}\frac{e^x}{1+e^{2x}}=\frac{0}{1+0}=0$$ This means that $\mbox{range }(f)\subset (0,+\infty)$. Let's find the singular points: $$f'(x)=\ldots=\dfrac{e^x(1-e^{2x})}{(1+e^{2x})^2}=0\Leftrightarrow1-e^{2x}=0\Leftrightarrow x=0$$ If $x<0$, then $f'(x)>0$. If $x>0$, then $f'(x)<0$, so there is an absolute maximum: $f(0)=1/2$. According to the Intermediate Value Theorem for continuous functions, we conclude: $$\boxed{\;\mbox{range} (f)=\left(0,1/2\right]\;}$$
 
Fernando Revilla said:
Here is the question:
Here is a link to the question:

Find the domain and range of f(x)= (e^x)/(1+2e^x)? - Yahoo! AnswersI have posted a link there to this topic so the OP can find my response.

Since it's a fraction, the denominator can never be 0. But since [math]\displaystyle \begin{align*} e^x > 0 \end{align*}[/math] for all x, so is [math]\displaystyle \begin{align*} 1 + 2e^x \end{align*}[/math]. So the domain is [math]\displaystyle \begin{align*} \mathbf{R} \end{align*}[/math].

As for the range, for starters

[math]\displaystyle \begin{align*} e^x > 0 \end{align*}[/math] and [math]\displaystyle \begin{align*} 1 + 2e^x > 0 \end{align*}[/math], so their quotient is also positive. As for the rest, it might be easier to write this in a more standard form...

[math]\displaystyle \begin{align*} y &= \frac{e^x}{1 + 2e^x} \\ &= \frac{1}{2} \left( \frac{2e^x}{1 + 2e^x} \right) \\ &= \frac{1}{2}\left( \frac{1 + 2e^x - 1}{1 + 2e^x} \right) \\ &= \frac{1}{2} \left( 1 - \frac{1}{1 + 2e^x} \right) \\ &= \frac{1}{2} - \frac{1}{2 + 4e^x} \end{align*}[/math]

Editing...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top