What Are Natural Boundary Conditions?

AI Thread Summary
Natural boundary conditions are determined through the analysis of differential equations, often deduced from the properties of the equations themselves. For instance, in a second-order ODE for a wave in an inhomogeneous medium, the requirement for finite elements leads to specific restrictions on derivatives, thus establishing boundary conditions. Similarly, in variational problems, the need for minimization can reveal necessary boundary conditions based on the behavior of the functions involved. The discussion highlights that these conditions are not arbitrary but arise logically from the mathematical framework of the problem. Understanding natural boundary conditions is essential for solving complex mathematical and physical problems effectively.
c299792458
Messages
67
Reaction score
0
Hi, I was reading Lemon's Perfect Form and it talked about "natural boundary conditions". But I don't understand exactly how one determines them. It seems to me that one imposes some random condition then deduce stuff from it...?!

Advanced thanks for any enlightenment!
 
Physics news on Phys.org
That's probably it though I do not have access to Lemon's text to confirm how he is using it but just a quick glance at the book's description I think you are probably correct. A lot of times if we approach a problem using a set of differential equations we find that we can deduce the appropriate boundary conditions just from inspection. For example, let's say we have a second order ODE that describes a wave in an inhomogeneous medium. One logical restriction would be that the elements of the ODE should be finite and this imposes restrictions on the derivatives that exist in the equation. From this we can find a set of boundary conditions that must arise to satisfy this restriction.

Likewise in say a problem of the minimum of an action we may introduce variables via taking the variation that start without any explicit boundary conditions imposed upon them. But by virtue of the need of minimization we may find that there must be a set of boundary conditions that have to be satisfied. Take for example the following expression:

\int w f(x,y) dxdy = 0

Now if we are taking a variational we could probably have said that the function or value w is arbitrary. If that is so, then the only way for the above integral to always be zero regardless of w would be that f(x,y) is identically zero over the domain of the integration. In this way we can infer a boundary condition on the function f(x,y) by virtue of how the mathematics falls out from the original problem.
 
thanks! this is very helpful :)
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top