1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Need help with solving an 2nd Order Linear ODE

  1. Sep 13, 2013 #1
    1. The problem statement, all variables and given/known data

    $$\frac { { d }^{ 2 }x }{ d{ t }^{ 2 } } +{ w }^{ 2 }x={ F }_{ 0 }sinwt\quad \quad \quad \quad x(0)=0\quad \quad x'(0)=0$$

    2. Relevant equations

    3. The attempt at a solution

    $$\frac { { d }^{ 2 }x }{ d{ t }^{ 2 } } +{ w }^{ 2 }x={ F }_{ 0 }sinwt\quad \quad \quad \quad x(0)=0\quad \quad x'(0)=0\\ \\ \\ x_{ c }={ c }_{ 1 }coswt+{ c }_{ 2 }sinwt\\ \\ \\ { x }_{ p }=Atsinwt+Btcoswt\\ { x }_{ p }'=wAtcoswt-wBtsinwt\\ { x }_{ p }''=-{ w }^{ 2 }Atsinwt-{ w }^{ 2 }Btcoswt\\ \\ \\ Sub\quad { x }_{ p },\quad { { x }_{ p } }',\quad and\quad { { x }_{ p } }''\quad into\quad the\quad DE\\ \\ \\ 0={ F }_{ 0 }sinwt$$

    I'm not sure where to proceed from here.
  2. jcsd
  3. Sep 13, 2013 #2


    User Avatar
    Homework Helper

    If you have
    x'' + ax' + bx = f(t)
    and the obvious particular solution candidate [itex]g(t)[/itex] is a solution of [itex]x'' + ax' + bx = 0[/itex], then try the candidate [itex]tg(t)[/itex].
  4. Sep 13, 2013 #3
    I don't follow. A particular solution applies to heterogeneous differential equations but you're using the term with a homogeneous differential equation?
  5. Sep 13, 2013 #4


    User Avatar
    Homework Helper

    If a term appears in your complementary solution and then in your particular solution, your particular solution needs to be changed a bit. If the term is already in the complementary solution, how can it possibly be part of the particular solution?

    That's why a useful trick is to multiply the guessed particular solution by the independent variable ( usually ##t## ), which will yield a completely different particular solution. If that does not get rid of all the duplicate terms between your complementary solution and your particular guess, multiply the particular guess by the independent variable a second time.

    If you're working with a second order ODE, you will never need to multiply more than twice ( i.e the highest power term introduced through multiplying would be ##t^2## ). If you're working with an nth order ODE, you never need to multiply more than ##n## times.

    For an easy example, try solving ##y'' - 3y' - 4y = e^{-t}##. Your complementary solution wont be too bad to solve, but try guessing the particular solution as you did before without multiplying through by the independent variable. You'll notice no combination of coefficients will satisfy your equation and your particular solution guess will be incorrect.
    Last edited: Sep 13, 2013
  6. Sep 13, 2013 #5
    I did do that though:

    or am I missing something?
  7. Sep 13, 2013 #6


    User Avatar
    Homework Helper

    I seem to have missed the t's. You however missed them when differentiating:

    [tex](t \cos(wt))' = \cos(wt) - wt \sin(wt)[/tex]

  8. Sep 13, 2013 #7
    Thanks. Solved but was incredibly long.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: Need help with solving an 2nd Order Linear ODE
  1. Linear 2nd order ODE? (Replies: 3)