Jeff Ford
- 154
- 2
I think I've got this one, I'd just like someone to check my work
Negate the statement (\exists! x \in S) P(x)
Since (\exists ! x \in S) P(x) \Longleftrightarrow \{(\exists x \in S) (P(x) \} \wedge \{(\forall x,y \in S) [P(x) \wedge P(y) \longrightarrow x = y \}
The negation would be \sim (\exists ! x \in S) P(x) \Longleftrightarrow \{(\forall x \in S) \sim P(x)\} \wedge \{\exists x,y \in S) \sim [P(x) \wedge P(y) \longrightarrow x = y \}
Does this look correct?
Negate the statement (\exists! x \in S) P(x)
Since (\exists ! x \in S) P(x) \Longleftrightarrow \{(\exists x \in S) (P(x) \} \wedge \{(\forall x,y \in S) [P(x) \wedge P(y) \longrightarrow x = y \}
The negation would be \sim (\exists ! x \in S) P(x) \Longleftrightarrow \{(\forall x \in S) \sim P(x)\} \wedge \{\exists x,y \in S) \sim [P(x) \wedge P(y) \longrightarrow x = y \}
Does this look correct?
Last edited: