Negative logarithm within an equation problem?

  • Thread starter Thread starter Tangent100
  • Start date Start date
  • Tags Tags
    Logarithm Negative
Click For Summary
The discussion centers around solving the equation -1 x (-2)^(n-1) = -16777216. The user recognizes that taking the logarithm of a negative number is undefined, leading to confusion in their calculations. It is clarified that if n is an odd integer, then (-2)^(n-1) can be expressed as a positive value, allowing for the solution to be found using log(2). The user acknowledges that this understanding simplifies their approach and confirms that their previous method of turning the expression positive was correct. The conversation highlights the importance of recognizing the properties of exponents and logarithms in solving equations.
Tangent100
Messages
24
Reaction score
0
Hello,

I know that a negative logarithm is undefined.

But I am faced with an equation like this:
-1 x (-2)^(n-1) = -16777216
I divided it by -1 to give (-2)^(n-1) = 16777216
And then took logs to get (n-1) log(-2) = log 16777216

Since I can't work out the log of a negative number, what do I do?

I know that the answer is 25 if i use log (2) but I don't get that :/
 
Physics news on Phys.org
Tangent100 said:
Hello,

I know that a negative logarithm is undefined.
Logarithms can be negative, as for example log(.1) = -1. What you probably meant was that you can't take the log of a negative number, assuming that we're dealing with the real-valued log function.
Tangent100 said:
But I am faced with an equation like this:
-1 x (-2)^(n-1) = -16777216
I divided it by -1 to give (-2)^(n-1) = 16777216
And then took logs to get (n-1) log(-2) = log 16777216
You could make an assumption about n. In this equation, (-2)^(n-1) = 16777216, if n is an odd integer (so that n - 1 is even), then (-2)n - 1 will be equal to (2)^(n-1) = 16777216. I would look at two cases: one where n is odd, and the other where n is even.
Tangent100 said:
Since I can't work out the log of a negative number, what do I do?

I know that the answer is 25 if i use log (2) but I don't get that :/
 
  • Like
Likes Tangent100
Mark44 said:
Logarithms can be negative, as for example log(.1) = -1. What you probably meant was that you can't take the log of a negative number, assuming that we're dealing with the real-valued log function.
You could make an assumption about n. In this equation, (-2)^(n-1) = 16777216, if n is an odd integer (so that n - 1 is even), then (-2)n - 1 will be equal to (2)^(n-1) = 16777216. I would look at two cases: one where n is odd, and the other where n is even.

Thank you for quick response.

So it works similar to the case where (-1)^even = positive and (-2)^odd = negative...
so if n-1 was odd (n was even), then the equation would be unsolvable...

It's an easier solution than I thought... It's nice to know why I turned that expression positive for all these years and got the right answer!

Edit: Yes, I did mean taking a log of a negative number.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K