A Neutron Decay: Questions & Answers

Dalor
Messages
9
Reaction score
0
Hi, I have questions on the neutron decay

What prevent the neutron to decay in udc or udt except mass/energy consideration ?

If we do the assumption that (udc) and (udt) have the same mass than the proton (yes I know, this doesn't make sense) the three decay (p, udc, udt) woulld have the same probability ?

Also this is only energy consideration that prevent the ##W## to decay in ##q \bar q## too?

Thank you
 
Physics news on Phys.org
A neutron is udd. Your question is confusing.
 
If the heavier quarks would be much lighter we would see them in everyday life, too.

As extreme case: If they would have the same mass we wouldn't consider them as different particle types.
Dalor said:
If we do the assumption that (udc) and (udt) have the same mass than the proton (yes I know, this doesn't make sense) the three decay (p, udc, udt) woulld have the same probability ?
No, there is still the CKM matrix. d->u has a higher amplitude than d->c or d->t.
 
Dalor said:
Also this is only energy consideration that prevent the WWW to decay in q¯qqq¯q \bar q too?
The W does decay to ##q\bar q##. However, the final state cannot be a single meson due to energy conservation and the quarks therefore quickly hadronize. Most of the time W decays hadronically.
 
Oh I was definately not paying attention !

mfb said:
No, there is still the CKM matrix. d->u has a higher amplitude than d->c or d->t.

Of course my mistake.
(Yes, they would be same particle, it was only for the "thought experiment".)

Orodruin said:
The W does decay to ##q\bar q##. However, the final state cannot be a single meson due to energy conservation and the quarks therefore quickly hadronize. Most of the time W decays hadronically.
Yep I meant the hadronic decay ##u \bar d##, ##u \bar s## and so on.

My question came from the ## \Lambda^0##, the leptonic decay is suppressed by several order of magnitude. I don't understand why since BR between leptonique and hadronic decay is not so low and it seems a big difference considering only phase space factor, no ? And the other hand in neutron decay there is only the leptonic decay, that was why I ask the kind of meaningless question about "the neutron decay if quark add same mass".

Thank you.
 

Similar threads

Back
Top