Newton's laws of motion -- Force of gravity on a skydiver

AI Thread Summary
The discussion centers on calculating the force of gravity acting on a skydiver, using the formula force = mass x acceleration. A mass of 75 kg and an acceleration due to gravity of 9.8 m/s² results in a force of 735 N. Participants clarify that the force of gravity remains constant regardless of whether the skydiver is in free fall or after landing, as it only changes with a change in mass. The conversation emphasizes understanding the principles behind Newton's laws of motion. Overall, the calculations and concepts discussed reinforce the consistency of gravitational force in this context.
kara123
Messages
21
Reaction score
4
Homework Statement
A 75 kg skydiver jumps out of an airplane. Calculate the force of gravity acting on him when he jumps and after he has landed. Explain any differences
Relevant Equations
Fnet=ma
I think you would do force of gravity= mass x acceleration

acceleration of gravity= 9.8 m/s
mass 75 kg
75kg x 9.8 m/s
=735 N

i don't know if that's right but i have no idea how to calculate it after he lands, any help would be greatly appreciated!
 
Physics news on Phys.org
kara123 said:
i don't know if that's right but i have no idea how to calculate it after he lands
Looks good to me. Question for you: Does the force of gravity change when he lands?
 
kara123 said:
... i have no idea how to calculate it after he lands, any help would be greatly appreciated!
It's a trick question. Knowing that, take a shot at it.
 
Doc Al said:
Looks good to me. Question for you: Does the force of gravity change when he lands?
it does not so it would remain the same after he lands then. The force of gravity would only change in this situation if the mass changes?
 
kara123 said:
it does not so it would remain the same after he lands then. The force of gravity would only change in this situation if the mass changes?
Right! As @russ_watters said, it's kind of a trick question.
 
  • Like
Likes russ_watters
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top