- #1

- 1

- 0

[tex]\sum[/tex]

**F**= d

**p**/dt = d(m

**v**)/dt = (dm/dt)

**v**+ m(d

**v**/dt)

Lets define a general velocity vector using arbitrary coordinates.The Einstein Summation Convention is being used. Let

**v**= v

^{a}

**e**

_{a}then (d

**v**/dt) = (dv

^{a}/dt)

**e**+ v

_{a}^{a}(d

**e**/dt). Substituting this into the equation above and factoring one can arrive at

_{a}[tex]\sum[/tex]

**F**= [(dm/dt)v

^{a}+ m(dv

^{a}/dt)]

**e**+ mv

_{a}^{a}(d

**e**/dt).

_{a}In regular cartesian coordinates, the last term in zero. My question is, can one apply N.S.L. in an accelerating frame of refrence by adding the last term, mv

^{a}(d

**e**/dt), instead of adding ficticious forces?

_{a}