MHB No Integer x for Which $P(x)=14$ Given Four Integer Values of $P(x)=7$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
A polynomial P(x) with integer coefficients that equals 7 at four distinct integer values implies that the polynomial can be expressed as P(x) - 7 = (x-a)(x-b)(x-c)(x-d) for integers a, b, c, and d. This means P(x) - 7 has at least four roots, indicating that it can be factored accordingly. If we assume there exists an integer x such that P(x) = 14, then P(x) - 14 = 0 would have to have a root, leading to a contradiction since P(x) - 7 = 0 has already accounted for all roots. Therefore, it is impossible for P(x) to equal 14 for any integer x. The conclusion is that no integer x exists for which P(x) = 14.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Show that if a polinomial $P(x)$ with integer coefficients takes the value 7 for four different integer values of x then there is no integer x for which $P(x) = 14$
 
Mathematics news on Phys.org
kaliprasad said:
Show that if a polinomial $P(x)$ with integer coefficients takes the value 7 for four different integer values of x then there is no integer x for which $P(x) = 14$
let $P(x)=Q(x)(x-a)(x-b)(x-c)(x-d)+7$
that is $P(a)=P(b)=P(c)=P(d)=7$
where $a,b,c,d$ are four different integer values
and $P(x),Q(x) $ with integer coefficients
if e is another integer value and $P(e)=14$ then we have
$P(e)-7=7=Q(e)(e-a)(e-b)(e-c)(e-d)----(1)$
where $Q(e),(e-a),(e-b),(e-c),(e-d)\in Z$
this is impossible for 7 is a prime ,and the proof is done
(1) can be true if $Q(e)\in Q$
 
Last edited:
P(x) -7 is zero at 4 different values say a,b,c,d

hence
$P(x)-7 = Q(x)(x-a)(x-b)(x-c)(x-d)$

or
$P(x)= Q(x)(x-a)(x-b)(x-c)(x-d)+7 $

Let

$P(t) = 14 = Q(t)(t-a)(t-b)(t-c)(t-d)+7 $

hence $Q(t)(t-a)(t-b)(t-c)(t-d)= 7 $

so 7 must have 5 factors out which 4 are different. but 7 cannot have 2 different factors (7 * -1 * -1 ) or (7 * 1) so above relation cannot be true so there is no solution
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top