MHB No Integer x for Which $P(x)=14$ Given Four Integer Values of $P(x)=7$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
A polynomial P(x) with integer coefficients that equals 7 at four distinct integer values implies that the polynomial can be expressed as P(x) - 7 = (x-a)(x-b)(x-c)(x-d) for integers a, b, c, and d. This means P(x) - 7 has at least four roots, indicating that it can be factored accordingly. If we assume there exists an integer x such that P(x) = 14, then P(x) - 14 = 0 would have to have a root, leading to a contradiction since P(x) - 7 = 0 has already accounted for all roots. Therefore, it is impossible for P(x) to equal 14 for any integer x. The conclusion is that no integer x exists for which P(x) = 14.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Show that if a polinomial $P(x)$ with integer coefficients takes the value 7 for four different integer values of x then there is no integer x for which $P(x) = 14$
 
Mathematics news on Phys.org
kaliprasad said:
Show that if a polinomial $P(x)$ with integer coefficients takes the value 7 for four different integer values of x then there is no integer x for which $P(x) = 14$
let $P(x)=Q(x)(x-a)(x-b)(x-c)(x-d)+7$
that is $P(a)=P(b)=P(c)=P(d)=7$
where $a,b,c,d$ are four different integer values
and $P(x),Q(x) $ with integer coefficients
if e is another integer value and $P(e)=14$ then we have
$P(e)-7=7=Q(e)(e-a)(e-b)(e-c)(e-d)----(1)$
where $Q(e),(e-a),(e-b),(e-c),(e-d)\in Z$
this is impossible for 7 is a prime ,and the proof is done
(1) can be true if $Q(e)\in Q$
 
Last edited:
P(x) -7 is zero at 4 different values say a,b,c,d

hence
$P(x)-7 = Q(x)(x-a)(x-b)(x-c)(x-d)$

or
$P(x)= Q(x)(x-a)(x-b)(x-c)(x-d)+7 $

Let

$P(t) = 14 = Q(t)(t-a)(t-b)(t-c)(t-d)+7 $

hence $Q(t)(t-a)(t-b)(t-c)(t-d)= 7 $

so 7 must have 5 factors out which 4 are different. but 7 cannot have 2 different factors (7 * -1 * -1 ) or (7 * 1) so above relation cannot be true so there is no solution
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top