MHB No Rational Roots of $x^n+\cdots+1=0$

  • Thread starter Thread starter melese
  • Start date Start date
  • Tags Tags
    Rational Roots
melese
Messages
19
Reaction score
0
(BGR,1989) Prove that for any integer $n>1$ the equation $\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0$ has no rational roots.
 
Mathematics news on Phys.org
melese said:
(BGR,1989) Prove that for any integer $n>1$ the equation $\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0$ has no rational roots.
$\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0----(*)$
if n=2 then we have :$x^2+2x+2=0$ no real solution
if m is a solution of original equation then m<0
multiply both sides with n ! we obtain :
$x^n+nx^{n-1}+-----+n! x+ n!=0$
using "the rational zero theorem"
if the original equation has a rational solution m<0 then n! must be a multiple of it(m is a negative integer)
replacing x with any negative factor of n! to (*)will not be zero ,so no rational root exists
in fact :
---+$\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=e^x$
[FONT=&#32048](Maclaurin expasion of $e^x$)
 
Last edited:
I agreed with you up to
Albert said:
replacing x with any negative factor of n! to (*)will not be zero
This part is a little vauge to me. To see what I mean, what if my orginal question was to show that there are no integer solutions? - Then your step appears hasty.
መለሰ
 
Albert said:
$\displaystyle \frac{x^n}{n!}+\frac{x^{n-1}}{(n-1)!}\cdots+\frac{x^2}{2!}+\frac{x^1}{1!}+1=0----(*)$
if n is even and m (a negative integer ) is a root then (*) becomes
$\displaystyle \frac{m^n}{n!}+\frac{m^{n-2}}{(n-2)!}\cdots+\frac{m^2}{2!}+1$
$- \dfrac{k^{n-1}}{(n-1)!}- \dfrac{k^{n-3}}{(n-3)!}\cdots-\dfrac{k}{1!}$
will not be zero,(the calculation is very tedious)
here k=-m is a positive integer
likewise if n is odd then (*) becomes
$\displaystyle -\frac{k^n}{n!}-\frac{k^{n-2}}{(n-2)!}\cdots-\frac{k^2}{2!}+1$
$+ \dfrac{m^{n-1}}{(n-1)!}+ \dfrac{m^{n-3}}{(n-3)!}\cdots+\dfrac{m}{1!}$
also will not be zero
so there is no integer root for original equation
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top