MHB Noetherian Rings - Dummit and Foote - Chapter 15 - Exercise 2a

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Exercise Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote Chapter 15 Exercise 2(a) on page 668 reads as follows:

Show that the following ring is not Noetherian by exhibiting an explicit infinite increasing chain of ideals:

- the ring of continuous real valued functions on [0, 1]I would appreciate help on this exercise.

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
In Dummit and Foote Chapter 15 Exercise 2(a) on page 668 reads as follows:

Show that the following ring is not Noetherian by exhibiting an explicit infinite increasing chain of ideals:

- the ring of continuous real valued functions on [0, 1]I would appreciate help on this exercise.
You could take the n'th ideal to be the set of continuous functions on [0,1] that vanish on the interval [0,1/n].
 
Another solution. Let the nth ideal be the principle ideal generated by the function $$f_n(x)=x^{1/n}$$.
 
johng said:
Another solution. Let the nth ideal be the principal ideal generated by the function $$f_n(x)=x^{1/n}$$.
That is the algebraist's solution, mine was the analyst's solution. (Handshake) (Smile)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top