A Noether's theorem for finite Hamiltonian systems

Click For Summary
Noether's theorem for finite Hamiltonian systems establishes a connection between symmetries and conserved quantities. To derive a first integral from a known symmetry, one can use the vector field generating the symmetry, denoted as ##\mathbf{w}##, and apply the relation ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##. The discussion highlights the process of deriving the Hamiltonian from the metric and emphasizes the necessity of identifying a symmetry to utilize Noether's theorem effectively. Participants express confusion about the steps involved in this derivation and the application of the theorem. Understanding these concepts is crucial for successfully applying Noether's theorem in finite Hamiltonian systems.
thaalves
Messages
2
Reaction score
0
TL;DR
How do I write a first integral knowing a symmetry?
The Noether's theorem for finite Hamiltonian systems says that:

1625494119380.png


My question is: If I know a symmetry how can I write the first integral?
 
Physics news on Phys.org
If ##\mathbf{w}## is the vector field generating the symmetry then I think you can put ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##?
 
In fact my knowledge is very limited in this area, my situation is as follows...
I have the metric, with the metric I can write the Hamiltonian, with the Hamiltonian, can I write the field? if yes, after that do i have to look for a symmetry? Apparently once I have symmetry, Noether's theorem gives me the first integral (his proof in this case), but I'm not getting it.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
7
Views
1K
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K