A Noether's theorem for finite Hamiltonian systems

AI Thread Summary
Noether's theorem for finite Hamiltonian systems establishes a connection between symmetries and conserved quantities. To derive a first integral from a known symmetry, one can use the vector field generating the symmetry, denoted as ##\mathbf{w}##, and apply the relation ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##. The discussion highlights the process of deriving the Hamiltonian from the metric and emphasizes the necessity of identifying a symmetry to utilize Noether's theorem effectively. Participants express confusion about the steps involved in this derivation and the application of the theorem. Understanding these concepts is crucial for successfully applying Noether's theorem in finite Hamiltonian systems.
thaalves
Messages
2
Reaction score
0
TL;DR Summary
How do I write a first integral knowing a symmetry?
The Noether's theorem for finite Hamiltonian systems says that:

1625494119380.png


My question is: If I know a symmetry how can I write the first integral?
 
Physics news on Phys.org
If ##\mathbf{w}## is the vector field generating the symmetry then I think you can put ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##?
 
In fact my knowledge is very limited in this area, my situation is as follows...
I have the metric, with the metric I can write the Hamiltonian, with the Hamiltonian, can I write the field? if yes, after that do i have to look for a symmetry? Apparently once I have symmetry, Noether's theorem gives me the first integral (his proof in this case), but I'm not getting it.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top