Graduate Noether's theorem for finite Hamiltonian systems

Click For Summary
Noether's theorem for finite Hamiltonian systems establishes a connection between symmetries and conserved quantities. To derive a first integral from a known symmetry, one can use the vector field generating the symmetry, denoted as ##\mathbf{w}##, and apply the relation ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##. The discussion highlights the process of deriving the Hamiltonian from the metric and emphasizes the necessity of identifying a symmetry to utilize Noether's theorem effectively. Participants express confusion about the steps involved in this derivation and the application of the theorem. Understanding these concepts is crucial for successfully applying Noether's theorem in finite Hamiltonian systems.
thaalves
Messages
2
Reaction score
0
TL;DR
How do I write a first integral knowing a symmetry?
The Noether's theorem for finite Hamiltonian systems says that:

1625494119380.png


My question is: If I know a symmetry how can I write the first integral?
 
Physics news on Phys.org
If ##\mathbf{w}## is the vector field generating the symmetry then I think you can put ##\mathbf{w}(f) = \{ f, P \}## for an arbitrary function ##f##?
 
In fact my knowledge is very limited in this area, my situation is as follows...
I have the metric, with the metric I can write the Hamiltonian, with the Hamiltonian, can I write the field? if yes, after that do i have to look for a symmetry? Apparently once I have symmetry, Noether's theorem gives me the first integral (his proof in this case), but I'm not getting it.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K