I Noether's theorem for point particles

Click For Summary
Many textbooks on analytical mechanics lack a thorough discussion of Noether's theorem in relation to point particle Lagrangian mechanics. Recommendations for resources include "Emily Noether's Wonderful Theorem" by Dwight Neuenschwander, though it has been criticized for errors and shaky mathematics. Arnold's classical mechanics book and Marsden's comprehensive text may also cover the theorem, but they are noted for their mathematical complexity. The discussion highlights a gap in accessible literature on this topic. Overall, finding detailed and clear resources on Noether's theorem for point particles remains a challenge.
William Crawford
Messages
41
Reaction score
36
TL;DR
Literature recommendations for Noether's theorem for point particles.
Hi PF,

As I'm delving back into analytical mechanics, I've noticed that many textbooks don't provide an in-depth discussion of Noether's theorem in the context of point particle Lagrangian mechanics. Does anyone have recommendations for resources (books or otherwise) that cover this topic in detail?

Thanks!
 
Physics news on Phys.org
I believe the reason for this is that one can model point particles as Dirac delta-function distributions. Then the continuum results of Noether's theorem carry over directly.
 
William Crawford said:
TL;DR Summary: Literature recommendations for Noether's theorem for point particles.

Hi PF,

As I'm delving back into analytical mechanics, I've noticed that many textbooks don't provide an in-depth discussion of Noether's theorem in the context of point particle Lagrangian mechanics. Does anyone have recommendations for resources (books or otherwise) that cover this topic in detail?

Thanks!
"Emily Noether's Wonderful Theorem" by Dwight Neuenschwander is dedicated to Noether's theorem. I had mixed feelings about it. There were a number of gross errors and I thought the Rund-Trautmann approach was mathematically a bit shaky. That said, I'm not sure there's anything better. Most other textbooks skate through the theorem very quickly.
 
I'm almost certain it is treated in Arnold's classical mechanics book and Marsden's giant tome, but both of those references are very much on the mathematical side of things. I don't have either at hand to be able to verify.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
35
Views
5K