Non-linear Differential Equation - Pulling my Hair

jkent
Messages
2
Reaction score
0
Non-linear Differential Equation - Pulling my Hair !

Hi,
What seems like a simple problem could be going abit better. Any ideas would be sincerely appreciated.

(y'')^2 -xy'' + y' = 0
The squared term is causing me grief !
If I set say v = y' , that still leaves me with the squared term.
(v')^2 - xv' + v =0.

Sorry .. I must be missing something. This looks remarkably quadratic - but its not triggering anything for me right now.

Ideas please and thank you !

J. Kent.
 
Physics news on Phys.org


When you let v=y', then we get:

v=xv'+f(v')

That's a common non-linear equation. Wanna' look for it?
 
Last edited:


Try substituting x=rcost, 4v=(rsint)^2.
 


That's a common non-linear equation
A clue : a Clairaut's ODE
Finally:
y = a x²-4a²x+b
a , b = constants
 


Good ideas all. I'll poke at this abit more. Claurauts ODE - hasn't made my list so far - but it clearly needs to. I was told that factoring will work. I just don't remember enough of this stuff and use it infrequently ! Thank you so much !
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top