I Nonlinear Second Order ODE: Can We Find an Analytical Solution?

tse8682
Messages
30
Reaction score
1
I'm trying to solve the following nonlinear second order ODE where ##a## and ##b## are constants: $$\frac{d^2y}{dx^2}+\frac{1}{x}\frac{dy}{dx}-\frac{y}{ay+b}=0$$ It looks somewhat like the modified Bessel equation, except the third term on the left makes it nonlinear. I've been trying to determine some way to find an analytical solution but haven't been able to come up with anything. It doesn't help much but it can also be written:$$\frac{1}{x}\frac{d}{dx}\left(x\frac{dy}{dx}\right)=\frac{y}{ay+b}$$Any suggestions would be greatly appreciated, thanks!
 
Physics news on Phys.org
Looks like for the case that ##b=0,a\neq 0## there is the analytical solution because then the ODE becomes linear with non constant coefficients (and I think the solution is a polynomial of 2nd order).

The case that ##a=0,b\neq 0## also seems to fallback to linear ODE as well so there should be an analytical solution.

But I am all out of ideas how to effectively treat the case ##a,b\neq 0##.
 
Last edited:
Delta2 said:
Looks like for the case that ##b=0,a\neq 0## there is the analytical solution because then the ODE becomes linear with non constant coefficients (and I think the solution is a polynomial of 2nd order).

The case that ##a=0,b\neq 0## also seems to fallback to linear ODE as well so there should be an analytical solution.

But I am all out of ideas how to effectively treat the case ##a,b\neq 0##.

Yeah, if ##b=0,a\neq 0## then the solution is ##y=\frac{x^2}{4a}+C_1\ln{x}+C_2##. If ##a=0,b\neq 0##, then it becomes the modified Bessel equation of order zero and the solution is ##y=C_1I_0\left(\frac{x}{\sqrt{b}}\right)+C_2K_0\left(\frac{x}{\sqrt{b}}\right)##.

It can be transformed if ##x=e^t## so ##t=\ln{x}##. With that it becomes: $$\frac{d^2y}{dt^2}=\frac{e^{2t}y}{ay+b}$$ They have another transformation here for equations that kinda look like that but I haven't been able to get that transformation to work.
 
  • Like
Likes Delta2
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top