MHB Notyo's question at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min, and its coarseness is such that it...?

Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 12 ft high? (Round your answer to two decimal places.)


___3.9, 12

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Notyo,

The statement:

"Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min"

tells us regarding the rate of change of the volume of the pile of gravel:

$$\frac{dV}{dt}=30\frac{\text{ft}^3}{\text{min}}$$

That is, the volume of the pile is increasing at a rate of 30 cubic feet per minute.

The statement:

"it forms a pile in the shape of a cone whose base diameter and height are always equal"

tells us:

$$V=\frac{1}{3}\pi \left(\frac{h}{2} \right)^2(h)=\frac{1}{12}\pi h^3$$

This comes from the formula for the volume of a cone, where the base radius is equal to half the height.

Now, if we implicitly differentiate this equation with respect to time $t$, we obtain:

$$\frac{dV}{dt}=\frac{1}{4}\pi h^2\frac{dh}{dt}$$

Since we are asked to find how fast the height of the pile is increasing, we want to solve for $$\frac{dh}{dt}$$:

$$\frac{dh}{dt}=\frac{4}{\pi h^2}\frac{dV}{dt}$$

Now, using the given data:

$$\frac{dV}{dt}=30\frac{\text{ft}^3}{\text{min}},\,h=12\text{ ft}$$

we find:

$$\frac{dh}{dt}=\frac{4}{\pi \left(12\text{ ft} \right)^2}\left(30\frac{\text{ft}^3}{\text{min}} \right)=\frac{5}{6\pi}\frac{\text{ft}}{\text{min}}\approx0.265258238486492\frac{\text{ft}}{\text{min}}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top