Number Line & Intervals (Part 2)

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    intervals Line
Click For Summary
SUMMARY

The discussion focuses on solving inequalities involving absolute values, specifically |x - 4| < 4 and |x + 5| >= 2. For the first inequality, the solution is the interval (0, 8), while the second inequality yields the intervals (-∞, -7] and [-3, ∞). Participants confirm the correctness of these intervals and provide visual representations on the number line using TikZ diagrams.

PREREQUISITES
  • Understanding of absolute value inequalities
  • Familiarity with interval notation
  • Basic knowledge of number line representation
  • Experience with TikZ for mathematical illustrations
NEXT STEPS
  • Study advanced absolute value inequalities and their graphical representations
  • Learn about interval notation and its applications in calculus
  • Explore TikZ documentation for creating complex mathematical diagrams
  • Practice solving compound inequalities and their graphical interpretations
USEFUL FOR

Students, educators, and anyone interested in mastering inequalities and their graphical representations on the number line.

mathdad
Messages
1,280
Reaction score
0
The set of real numbers satisfying the given inequality is one or more intervals on the number line. Show the intervals on a number line.

(A) |x - 4| < 4

(B) |x + 5| >= 2

For (A), I did the following:

-4 < x - 4 < 4

I now add 4 to each term.

0 < x < 8

On the number line, I would need to plot (0, 8). Is this correct?

For (B), we have the following:

|x + 5| >= 2

x + 5 < -2 or x + 5 >= 2

x =< -2 - 5 or x >= 2 - 5

x =< - 7 or x >= -3

I must plot [-infinity, -7] and [-3, infinity] on the number line. Is this right?
 
Physics news on Phys.org
a) $$|x-4|<4$$

I would read this as a distance formula, that is, all real numbers $x$ that are less than 4 units from 4, which as you stated is the interval $(0,8)$.

\begin{tikzpicture}[scale=2.5]
\draw[very thick] (0,0) -- (8,0);
\path [draw=black, fill=white, thick] (0,0) circle (2pt);
\path [draw=black, fill=white, thick] (8,0) circle (2pt);
\draw[latex-latex] (-0.5,0) -- (8.5,0) ;
\foreach \x in {0,1,2,3,4,5,6,7,8}
\draw[shift={(\x,0)},color=black] (0pt,3pt) -- (0pt,-3pt);
\foreach \x in {0,1,2,3,4,5,6,7,8}
\draw[shift={(\x,0)},color=black] (0pt,0pt) -- (0pt,-3pt) node[below]
{$\x$};
\end{tikzpicture}

b) $$|x+5|\ge2$$

I would read this as all real numbers $x$ whose distance from $-5$ is greater than or equal to 2, which as you stated is the interval $(-\infty,-7]\,\cup\,[-3,\infty)$.

\begin{tikzpicture}[scale=2.5]
\path [draw=black, fill=black, thick] (-7,0) circle (2pt);
\path [draw=black, fill=black, thick] (-3,0) circle (2pt);
\draw[latex-latex] (-9.5,0) -- (-0.5,0) ;
\draw[->,thick] (-7,0) -- (-9.25,0);
\draw[->,thick] (-3,0) -- (-0.75,0);
\foreach \x in {-9,-8,-7,-6,-5,-4,-3,-2,-1}
\draw[shift={(\x,0)},color=black] (0pt,3pt) -- (0pt,-3pt);
\foreach \x in {-9,-8,-7,-6,-5,-4,-3,-2,-1}
\draw[shift={(\x,0)},color=black] (0pt,0pt) -- (0pt,-3pt) node[below]
{$\x$};
\end{tikzpicture}
 
MarkFL said:
a) $$|x-4|<4$$

I would read this as a distance formula, that is, all real numbers $x$ that are less than 4 units from 4, which as you stated is the interval $(0,8)$.

\begin{tikzpicture}[scale=2.5]
\draw[very thick] (0,0) -- (8,0);
\path [draw=black, fill=white, thick] (0,0) circle (2pt);
\path [draw=black, fill=white, thick] (8,0) circle (2pt);
\draw[latex-latex] (-0.5,0) -- (8.5,0) ;
\foreach \x in {0,1,2,3,4,5,6,7,8}
\draw[shift={(\x,0)},color=black] (0pt,3pt) -- (0pt,-3pt);
\foreach \x in {0,1,2,3,4,5,6,7,8}
\draw[shift={(\x,0)},color=black] (0pt,0pt) -- (0pt,-3pt) node[below]
{$\x$};
\end{tikzpicture}

b) $$|x+5|\ge2$$

I would read this as all real numbers $x$ whose distance from $-5$ is greater than or equal to 2, which as you stated is the interval $(-\infty,-7]\,\cup\,[-3,\infty)$.

\begin{tikzpicture}[scale=2.5]
\path [draw=black, fill=black, thick] (-7,0) circle (2pt);
\path [draw=black, fill=black, thick] (-3,0) circle (2pt);
\draw[latex-latex] (-9.5,0) -- (-0.5,0) ;
\draw[->,thick] (-7,0) -- (-9.25,0);
\draw[->,thick] (-3,0) -- (-0.75,0);
\foreach \x in {-9,-8,-7,-6,-5,-4,-3,-2,-1}
\draw[shift={(\x,0)},color=black] (0pt,3pt) -- (0pt,-3pt);
\foreach \x in {-9,-8,-7,-6,-5,-4,-3,-2,-1}
\draw[shift={(\x,0)},color=black] (0pt,0pt) -- (0pt,-3pt) node[below]
{$\x$};
\end{tikzpicture}

Cool. Thanks.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K