I Number of Binary Operations on a Set with a Special Property

  • I
  • Thread starter Thread starter Expiring
  • Start date Start date
  • Tags Tags
    Set
Expiring
Messages
4
Reaction score
3
TL;DR Summary
I was wondering if anyone could look over my solution to the question

"How many different binary operations on a set S with n elements have the property that for all x ∈ S, x * x = x ?"
Hello all,

The question I am tackling is as follows:

How many different binary operations on a set S with n elements have the property that for all x ∈ S, x * x = x ?

I was wondering if any of you could look over my solution and tell me if my logic is correct.

Solution:

Thinking of all the possible operations as entries on an n x n matrix, the entries x * x would lie on the diagonal of the matrix. The total number of entries in the matrix would be n^2, and, since the elements on the diagonal of the matrix (the elements x * x) have a pre-determined value (and there are n of these elements), the number of elements that we need to map would total n^2 - n.

So, when when we map n^2 - n elements to n elements, there will be n^(n^2 - n) total binary operations.

Any feedback would be great!
 
  • Like
Likes Bosko and Hill
Physics news on Phys.org
Very good. makes sense to me.
 
Expiring said:
I was wondering if any of you could look over my solution and tell me if my logic is correct.
Yes, you are right. ##n^{n(n-1)}## is the solution , if there no any other constraint on the binary operation *.
There are n(n-1) places in the matrix that are not on the diagonal.
On any of them you can put any of n elements of the set S.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top