I Number of Binary Operations on a Set with a Special Property

  • I
  • Thread starter Thread starter Expiring
  • Start date Start date
  • Tags Tags
    Set
Expiring
Messages
4
Reaction score
3
TL;DR Summary
I was wondering if anyone could look over my solution to the question

"How many different binary operations on a set S with n elements have the property that for all x ∈ S, x * x = x ?"
Hello all,

The question I am tackling is as follows:

How many different binary operations on a set S with n elements have the property that for all x ∈ S, x * x = x ?

I was wondering if any of you could look over my solution and tell me if my logic is correct.

Solution:

Thinking of all the possible operations as entries on an n x n matrix, the entries x * x would lie on the diagonal of the matrix. The total number of entries in the matrix would be n^2, and, since the elements on the diagonal of the matrix (the elements x * x) have a pre-determined value (and there are n of these elements), the number of elements that we need to map would total n^2 - n.

So, when when we map n^2 - n elements to n elements, there will be n^(n^2 - n) total binary operations.

Any feedback would be great!
 
  • Like
Likes Bosko and Hill
Physics news on Phys.org
Very good. makes sense to me.
 
Expiring said:
I was wondering if any of you could look over my solution and tell me if my logic is correct.
Yes, you are right. ##n^{n(n-1)}## is the solution , if there no any other constraint on the binary operation *.
There are n(n-1) places in the matrix that are not on the diagonal.
On any of them you can put any of n elements of the set S.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top