Number of microstates in multi-particle system

Kara386
Messages
204
Reaction score
2

Homework Statement


Find the number of accessible microstates for a multi-particle system whose energy depends on temperature as ##U = aT^n## where a is a positive constant and ##n>1##. Use the fact that
##S = \int \frac{C_v}{T}dT##

Homework Equations

The Attempt at a Solution


##U = nC_vdT ##

So ##\frac{U}{n} = C_v dT = \frac{aT^n}{n}##

##S = \frac{a}{n} \int T^{n-1}dT = \frac{a(n-1)^2}{n}T^{n-2}##

##=kln(\Omega)##
Rearranging and raising both sides to the power of e gives
##\Omega = e^{\frac{a}{k}(n-1)^2T^{n-2}}##

I'm slightly suspicious of that answer and in particular of whether the internal energy U in the equation ##U=nC_vdT## is the same as the U in the question, and the n in the equation ##U=nC_vdT## is the same n as the one in the equation for energy. Because the n in the given energy equation isn't defined. Is what I've done ok?
 
Last edited:
Physics news on Phys.org
Your starting point should be the definition of ##C_v##:
$$
C_v = \frac{dU}{dT}
$$
Also, you should check that integration you did.
 
DrClaude said:
Your starting point should be the definition of ##C_v##:
$$
C_v = \frac{dU}{dT}
$$
Also, you should check that integration you did.
Because I differentiated. How ridiculous. Ok, I'll try again!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top