Number of Positive Integer Pairs for Perfect Squares

Click For Summary

Discussion Overview

The discussion centers on the problem of finding ordered pairs of positive integers \(x\) and \(y\) such that both \(x^2 + 3y\) and \(y^2 + 3x\) are perfect squares. The scope includes mathematical reasoning and exploration of potential solutions.

Discussion Character

  • Exploratory, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant presents a method involving equations \(x^2 + 3y = k^2\) and \(y^2 + 3x = l^2\) but concludes that there are no possibilities for positive integers \(x\) and \(y\).
  • Another participant suggests expressing \(x\) and \(y\) in terms of additional variables \(a\) and \(b\) to explore further solutions.
  • A participant proposes the pair \((1,1)\) as a potential solution.
  • Another participant lists several pairs, including \((1,1)\), \((2,4)\), \((3,9)\), \((4,16)\), and \((5,25)\), claiming there are infinitely many solutions.

Areas of Agreement / Disagreement

There is disagreement regarding the existence of solutions. Some participants assert that there are infinite pairs that satisfy the conditions, while others express skepticism about the initial approach and results.

Contextual Notes

Participants have not reached a consensus on the methods or solutions, and the discussion includes various approaches and interpretations of the problem.

juantheron
Messages
243
Reaction score
1
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

are both perfect squares

my solution::

http://latex.codecogs.com/gif.latex?\hspace{-16}$Let%20$\bf{x^2+3y=k^2}$%20and%20$\bf{y^2+3x=l^2}$\\%20Where%20$\bf{x,y,k,l\in%20\mathbb{Z^{+}}}$\\%20$\bf{(x^2-y^2)-3(x-y)=k^2-l^2}$\\%20$\bf{(x-y).(x+y-3)=(k+l).(k-l)}$\\%20$\bullet\;\;%20\bf{(x-y)=k+l\;\;,(x+y-3)=k-l}$\\%20$\bullet\;\;%20\bf{(x-y)=k-l\;\;,(x+y-3)=k+l}$\\%20So%20$\bf{x=\frac{2k+3}{2}\notin%20\mathbb{Z^{+}}}$\\%20and%20$\bf{y=\frac{-2l+3}{2}\notin%20\mathbb{Z^{+}}}$\\

no possibilities.

but there is also more possibilities

like $(x-y).(x+y-3) = 1 \times (k^2-l^2) = (k^2-l^2) \times 1$

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
 
Mathematics news on Phys.org
We have $x^2+3y=(x+a)^2$ for some positive integer $a$ and similar for $y$ and some $b$. Express $x$ and $y$ through $a$ and $b$ and see when $x$ and $y$ are positive integers.
 
what about $(1,1)$?
 
jacks said:
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

. . . .

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
I think you just changed the question.
 
jacks said:
My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square
Of course; infinite:
1,1
2,4
3,9
4,16
5,25
...and on...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K