MHB Number of Positive Integer Pairs for Perfect Squares

juantheron
Messages
243
Reaction score
1
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

are both perfect squares

my solution::

http://latex.codecogs.com/gif.latex?\hspace{-16}$Let%20$\bf{x^2+3y=k^2}$%20and%20$\bf{y^2+3x=l^2}$\\%20Where%20$\bf{x,y,k,l\in%20\mathbb{Z^{+}}}$\\%20$\bf{(x^2-y^2)-3(x-y)=k^2-l^2}$\\%20$\bf{(x-y).(x+y-3)=(k+l).(k-l)}$\\%20$\bullet\;\;%20\bf{(x-y)=k+l\;\;,(x+y-3)=k-l}$\\%20$\bullet\;\;%20\bf{(x-y)=k-l\;\;,(x+y-3)=k+l}$\\%20So%20$\bf{x=\frac{2k+3}{2}\notin%20\mathbb{Z^{+}}}$\\%20and%20$\bf{y=\frac{-2l+3}{2}\notin%20\mathbb{Z^{+}}}$\\

no possibilities.

but there is also more possibilities

like $(x-y).(x+y-3) = 1 \times (k^2-l^2) = (k^2-l^2) \times 1$

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
 
Mathematics news on Phys.org
We have $x^2+3y=(x+a)^2$ for some positive integer $a$ and similar for $y$ and some $b$. Express $x$ and $y$ through $a$ and $b$ and see when $x$ and $y$ are positive integers.
 
what about $(1,1)$?
 
jacks said:
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

. . . .

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
I think you just changed the question.
 
jacks said:
My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square
Of course; infinite:
1,1
2,4
3,9
4,16
5,25
...and on...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top