Number of real roots in polynomial equation

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Polynomial Roots
Click For Summary
SUMMARY

The polynomial equation $$x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5} = 0$$ has been analyzed for its number of real roots. The discussion concluded that the equation has exactly two real roots. Various methods were considered, including graphical analysis and the application of Descartes' Rule of Signs, which confirmed the findings. The equation's structure and coefficients were critical in determining the root count.

PREREQUISITES
  • Understanding of polynomial equations and their properties
  • Familiarity with Descartes' Rule of Signs
  • Basic knowledge of root-finding techniques
  • Graphical analysis of functions
NEXT STEPS
  • Study Descartes' Rule of Signs in detail
  • Learn about numerical methods for finding polynomial roots
  • Explore graphical methods for analyzing polynomial functions
  • Investigate the implications of polynomial degree on root behavior
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial equations and their real roots.

juantheron
Messages
243
Reaction score
1
Evaluate number of real roots of the equation $$x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5} = 0$$
 
Mathematics news on Phys.org
jacks said:
Evaluate number of real roots of the equation $$x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5} = 0$$

My solution:

Let $$f(x)=x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}$$

And then:

$$f'(x)=6x^5-5x^4+4x^3-3x^2+2x-1$$

$$f''(x)=30x^4-20x^3+12x^2-6x+2$$

$$f'''(x)=120x^3-60x^2+24x-6$$

$$f^{(4)}(x)=360x^2-120x+24$$

The 4th derivative has a negative discriminant, therefore as an upward opening parabolic function, is positive for all $x$. This means the third derivative is strictly increasing and can have only 1 real root. Using a numeric root-finding technique, we find this root is approximated by:

$$x\approx0.342384094858369$$

We then look at:

$$f''(0.342384094858369)=0.961949707437654530>0$$

This means we may conclude that the 2nd derivative is positive for all $x$, and so the first derivative is strictly increasing with only 1 real root, which we find at about:

$$x\approx0.67033204760309682774$$

We then look at:

$$f(0.67033204760309682774)=0.03509389397174151671752$$

And so we conclude that for all real $x$, we have $f(x)>0$, and thus $f$ has no real roots.
 
Another way:

If $p(x)=x^6-x^5+x^4-x^3+x^2-x+\dfrac{2}{5}$ then $p(-x)=x^6+x^5+x^4+x^3+x^2+x+\dfrac{2}{5}$ and by the Descartes' Rule of Signs there are no negative roots for $p(x)$.

On the other hand, if $f(x)=a_nx^n+\ldots +a_1x+a_0\in\mathbb{R}[x]$ with $a_n\neq 0$ and $c$ a root of de $f(x)$ then $|c|\leq M$ where $$M=\max\left \{\left(n\left| \frac{a_{i-1}}{a_n}\right|\right)^{1/i}:i=1,\ldots,n\right\}.$$ Now, we can use the Sturm's Theorem on the closed interval $\left[0,\lfloor M\rfloor +1\right].$
 
My Solution::

$\bullet\; $ If $x\leq 0\;,$ Then $\displaystyle f(x) = x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}>0$

$\bullet\; $ If $x\geq 1\;,$ Then $\displaystyle f(x) = x^5(x-1)+x^3(x-1)+x(x-1)+\frac{2}{5}>0$

$\bullet \; 0<x<1\;,$ Let $\displaystyle f(x)-\frac{2}{5} = x^6-x^5+x^4-x^3+x^2-x=x(x-1)(x^4+x^2+1)$

So $\displaystyle f(x)-\frac{2}{5} = -x(1-x)(1+x+x^2)(1-x+x^2) = -(1-x^3)(x-x^2+x^3)$

So $\displaystyle -f(x)+\frac{2}{5} = (1-x^3)(x-x^2+x^3) \leq \left(\frac{1-x^3+x-x^2+x^3}{2}\right)^2$

So $\displaystyle -f(x)+\frac{2}{5}\leq \left(\frac{x-x^2+1}{2}\right)^2 = \frac{1}{64}\left(4x-4x^2+4\right)^2$

So $\displaystyle -f(x)+\frac{2}{5} \leq \frac{1}{64}\left(5-(2x-1)^2\right) \leq \frac{25}{64}$

So $\displaystyle -f(x)+\frac{2}{5}\leq \frac{25}{64}\Rightarrow f(x)-\frac{2}{5}\geq \frac{25}{64}$

So $\displaystyle f(x)\geq \frac{2}{5}-\frac{25}{64} = \frac{3}{320}>0$

So $\displaystyle f(x) = x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}>0\;\forall x \in \mathbb{R}$
 
Last edited by a moderator:

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K