Observables of position and momentum have a continuous spectrum

asdf1
Messages
734
Reaction score
0
could someone explain this paragraph taken from "concepts of modern physics" by arthur beiser pg175? I'm having trouble understanding it...

"A dynamical variable G may not be quantized. In this case, measurements of G made on a number of identical systems will not yield a unique result but instead a spread of values whose average is the expectation value
<G>=(integrate) G(psi^2)dx"

and why if the electron's position in the hydrogen atom isn't quantized, we have to think of the electron in the vicinity of the nuvleus with a ceratian probability?
 
Physics news on Phys.org
Some physical observables can take on discrete (quantized) values, like the energy of a particle in an infinite potential well, harmonic oscillator, or the energy of the electron in an hydrogen atom. In this case the eigenvalue-spectrum of the corresponding observable is discrete. This is not always the case though. The observables of position and momentum have a continuous spectrum (ie, not quantized).
The expectation value is calculated the same way as with any observable:
&lt;G&gt;=&lt;\psi|G|\psi&gt;

So the position of the electron in a hydrogen atom in not quantized (it's after all described by a continuous wavefunction) and thus given by a probability density |psi|^2
 
thank you very much for explaining!:)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top