Observation of gravitational wave strain.

wipeoutscott
Messages
2
Reaction score
0
Hello, I have a question or two about gravitational waves.

My current job is basically to measure atomic strains using x-ray diffraction. I have managed to reduce the error in measurement low enough to reveal an annual sine wave in my data for a sample which should not contain any strain. I first ruled out temperature as a cause, then noticed the oscillation is in good agreement with Earths distance from the sun. Further analysis has shown that the more minor oscillations trend very well with the azimuth and elevation of the moon at the time for a short enough period that the sun distance has not moved much.

The combination of gravitational effects from the sun and moon appear to be influencing the measured strain on the atomic scale. Searching on Google regarding gravity and strain has kept pointing me to gravitational waves.

The annual oscillation is on the order of 10^-5, from what I have found online gravitational waves should be many orders of magnitude weaker than this. However this seems too high to be a direct result of gravity, or am I wrong?

I would also like to use the sun/moon position at the time of measurement to predict my result. However I'm not sure how to superimpose the two effects, especially considering gravitational waves!
 
Physics news on Phys.org
I don't know details about your actual experiment or what you are measuring (my lack of knowledge), but I would be much more surprised to find out that you were measuring gravitation waves instead of the simple change in gravitation effect from the distance between the Earth and the moon/sun changing. Its pretty easy to determine the gravitational force (mathematically), and there are pretty exact values in terms of the difference in distance between the sun/moon at apogee and perigee, so I would crunch the numbers to predict the difference in force, and see if that lines up with experiment.
 
Thanks for your response Vorde. I've ran some simulations in Pro/e Mechanica and found the gravitational effects to be orders of magnitude smaller than the strains I am observing.
I'm starting to realize the strains I am observing are not due to the atomic spacing but very slight changes in the incident beam wavelengths (the other variable in Bragg's law). I've ran some basic numbers regarding gravitational red-shift that should occur from the sun's gravity and this is starting to make more sense.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top