Mentz114
- 5,429
- 292
I'm trying to get a metric in the frame of a boosted observer. The spacetime in question has coframe and frame basis vectors
<br /> \begin{align*}<br /> \vec{\sigma}^0 = \frac{-1}{\sqrt{F}}dt\ \ \ \ & \vec{e}_0 = -\sqrt{F}\partial_t \\<br /> \vec{\sigma}^1 = \sqrt{F}dz\ \ \ \ & \vec{e}_1 = \frac{1}{\sqrt{F}}\partial_z \\<br /> \vec{\sigma}^2 = \sqrt{F}dr\ \ \ \ & \vec{e}_2 = \frac{1}{\sqrt{F}}\partial_r \\<br /> \vec{\sigma}^3 = r\sqrt{F}d\phi\ \ \ \ & \vec{e}_3 = \frac{1}{r\sqrt{F}}\partial_\phi <br /> \end{align*}<br />
Boosting the coordinate frame basis by \beta in the \phi direction gives the new frame basis
<br /> \begin{align*}<br /> \vec{f}_0 &= -\gamma\sqrt{F}\partial_t + \gamma\beta \frac{1}{r\sqrt{F}}\partial_\phi \\<br /> \vec{f}_1 &= \frac{1}{\sqrt{F}}\partial_z \\<br /> \vec{f}_2 &= \frac{1}{\sqrt{F}}\partial_r \\<br /> \vec{f}_3 &= \gamma\frac{1}{r\sqrt{F}}\partial_\phi + \gamma\beta \sqrt{F}\partial_t <br /> \end{align*}<br />
Now, my problem is reading off the new coframe basis s. My attempt is below, but I'm only 50% confident it's right.
<br /> \begin{align*}<br /> {\vec{s}}^0 &= (\gamma\sqrt{F})^{-1}dt+(\gamma\beta)^{-1}r\sqrt{F}d\phi \\<br /> {\vec{s}}^1 &= \sqrt{F}dz \\<br /> {\vec{s}}^2 &= \sqrt{F}dr \\<br /> {\vec{s}}^3 &= \gamma^{-1}r\sqrt{F}d\phi + (\gamma\beta)^{-1}\sqrt{F}dt<br /> \end{align*}<br />
The metric that arises from this is sort of plausible. I'd appreciate any pointers, particularly to any errors.
<br /> \begin{align*}<br /> \vec{\sigma}^0 = \frac{-1}{\sqrt{F}}dt\ \ \ \ & \vec{e}_0 = -\sqrt{F}\partial_t \\<br /> \vec{\sigma}^1 = \sqrt{F}dz\ \ \ \ & \vec{e}_1 = \frac{1}{\sqrt{F}}\partial_z \\<br /> \vec{\sigma}^2 = \sqrt{F}dr\ \ \ \ & \vec{e}_2 = \frac{1}{\sqrt{F}}\partial_r \\<br /> \vec{\sigma}^3 = r\sqrt{F}d\phi\ \ \ \ & \vec{e}_3 = \frac{1}{r\sqrt{F}}\partial_\phi <br /> \end{align*}<br />
Boosting the coordinate frame basis by \beta in the \phi direction gives the new frame basis
<br /> \begin{align*}<br /> \vec{f}_0 &= -\gamma\sqrt{F}\partial_t + \gamma\beta \frac{1}{r\sqrt{F}}\partial_\phi \\<br /> \vec{f}_1 &= \frac{1}{\sqrt{F}}\partial_z \\<br /> \vec{f}_2 &= \frac{1}{\sqrt{F}}\partial_r \\<br /> \vec{f}_3 &= \gamma\frac{1}{r\sqrt{F}}\partial_\phi + \gamma\beta \sqrt{F}\partial_t <br /> \end{align*}<br />
Now, my problem is reading off the new coframe basis s. My attempt is below, but I'm only 50% confident it's right.
<br /> \begin{align*}<br /> {\vec{s}}^0 &= (\gamma\sqrt{F})^{-1}dt+(\gamma\beta)^{-1}r\sqrt{F}d\phi \\<br /> {\vec{s}}^1 &= \sqrt{F}dz \\<br /> {\vec{s}}^2 &= \sqrt{F}dr \\<br /> {\vec{s}}^3 &= \gamma^{-1}r\sqrt{F}d\phi + (\gamma\beta)^{-1}\sqrt{F}dt<br /> \end{align*}<br />
The metric that arises from this is sort of plausible. I'd appreciate any pointers, particularly to any errors.