On standardization of normal distribution

jwqwerty
Messages
41
Reaction score
0
Let X be random variable and X~N(u,σ^2)
Thus, normal distribution of x is
f(x) = (1/σ*sqrt(2π))(e^(-(x-u)^2)/(2σ^2)))

If we want to standardize x, we let z=(x-u)/σ
Then the normal distribution of z becomes
z(x) = (1/σ*sqrt(2π))(e^(-(x^2)/(2))

and we usually write Z~N(0,1)

But as you can see, sigma in z(x) does not disappear. Thus, in my opinion Z~N(0,1) should be actually written as Z~(1/σ)N(0,1). So here goes my question :
why does every textbook use the notation Z~N(0,1), not Z~(1/σ)N(0,1)
 
Last edited:
Physics news on Phys.org
By subtracting μ from ##x##, f(x) will become centered at 0 instead of the mean, because all values have been reduced by μ. After this, dividing by σ has the effect of altering the spread of the data, since where x was originally σ, it has now become 1. Similarly, 2σ becomes 2 and so on, and now the curve has standard deviation (and variance) of 1. Hence, if ##Z=\frac{X-μ}{σ}##, then Z ~ N(0,1) .
 
jwqwerty said:
Let X be random variable and X~N(u,σ^2)
Thus, normal distribution of x is
f(x) = (1/σ*sqrt(2π))(e^(-(x-u)^2)/(2σ^2)))

If we want to standardize x, we let z=(x-u)/σ
Then the normal distribution of z becomes
z(x) = (1/σ*sqrt(2π))(e^(-(x^2)/(2))

and we usually write Z~N(0,1)

But as you can see, sigma in z(x) does not disappear. Thus, in my opinion Z~N(0,1) should be actually written as Z~(1/σ)N(0,1). So here goes my question :
why does every textbook use the notation Z~N(0,1), not Z~(1/σ)N(0,1)

You can't do the standardization the way you did (simply by substituting the expression for z in the density). What you are doing is attempting to find the density of a
new random variable Z given an existing density and a transformation. Have you studied that technique?
 
statdad said:
You can't do the standardization the way you did (simply by substituting the expression for z in the density). What you are doing is attempting to find the density of a
new random variable Z given an existing density and a transformation. Have you studied that technique?

Then what does standardization mean? How can we standardize?
Sorry i have just started studying statistics and i need your help, statdad!
 
Last edited:
Standardization means what you think it means: when you standardize data in this setting you subtract the mean and divide that difference by the standard deviation. The fact that this operation shifts the work from an arbitrary normal distribution to the standard normal distribution is a mathematical result that needs to be demonstrated: simply making the substitution in the density function isn't enough.

Is your course calculus based?
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top