One of those hand shaking problems

  • Thread starter Thread starter ashi_mashi
  • Start date Start date
  • Tags Tags
    hand
ashi_mashi
Messages
8
Reaction score
0
Hi agian...
I have one of those hand shaking problems..it says:
There are 14 couples. There is some shaking of hands. No one shakes hand of their date. No one shakes hands more than once with anyone person. A boy asks each person how many times they shook hands. Each person gave him a different answer. How many times did the boy's date shake hands?Now, i thought it well through and i got the idea that assuming that everyone shook hands, then the total number of hand shakings would be "26+25+24+...+13+13+12..+1+0". (I drew a little sketch ) I thought that since there are two 13's (i'm not 100% sure, but I'm pretty sure;)) then, the boy has to be one of those 13's. And the problem is kinda solved...but, the TOTAL number that everyone shakes hands is the same, that is 26...so, i guess it can't be solved this way...anyway, I'm a little confused...i guess there is another way to solve it, or maybe i shouldn't assume that everyone shakes hands.

Thanks agian.
 
Last edited:
Physics news on Phys.org
You've gotten it right, with the reasonable assumption that no one shakes their own hand. There are 28 people. The boy asks 27 different people and gets 27 different responses. By the rules, no one can shake hands with more than 26 people, so the responses ranged from 0-26. The person who shook hands with 26 people shook hands with everyone except him/herself and the person who shook hands with 0 people. So {0, 26} must be a couple. By the same reasoning, the rest of the couples are {1, 25}, {2, 24}, ... {13, 13}. Also, by the time you get to 13, 13 has already shaken hands with 14-26, and 0-12 are already paired with their dates, so the boy must be 13's date.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top