MHB  Find Value of $k$ for Equation with One Real Solution

  • Thread starter Thread starter juantheron
  • Start date Start date
AI Thread Summary
The equation \(x^4+(1-2k)x^2+(k^2-1) = 0\) has one real solution when \(k = -1\). To determine this, the discriminant of the related quadratic must equal zero, leading to conditions on \(k\). Analyzing the roots reveals that for \(k = -1\), the equation simplifies to \(x^4 + 3x^2 = 0\), which has \(x = 0\) as its only real solution. Other values of \(k\) either yield multiple real roots or do not satisfy the conditions for a single real solution. Thus, the only valid value for \(k\) is \(-1\).
juantheron
Messages
243
Reaction score
1
find value of $k$ for which the equation $x^4+(1-2k)x^2+(k^2-1) = 0$ has one real solution
 
Last edited by a moderator:
Mathematics news on Phys.org
jacks said:
find value of $k$ for which the equation $x^4+(1-2k)x^2+(k^2-1) = 0$ has one real solution

This is a quadratic equation (let $u=x^2$ if you need to make it clearer) so you can use the discriminant to find the values of k - we know that there is one real solution if the discriminant is equal to 0

Hence we're looking for a value of k such that: $b^2 - 4ac = 0$

In this instance
  • $a = 1$
  • $b = 1-2k$
  • $c = k^2 -1$
 
SuperSonic4 said:
This is a quadratic equation (let $u=x^2$ if you need to make it clearer) so you can use the discriminant to find the values of k - we know that there is one real solution if the discriminant is equal to 0
I don't believe that is correct. If the discriminant is 0, then the quadratic has one real root. But if that root is negative, there is no real solution to the quartic while if it is positive, there are two real roots. In order that there be only one real root to the original quartic is if the quadratic has, as its only positive root, u= 0 so that the only real root to the original quartic is 0. That means that the quadratic in u must be simply u^2= 0. In other words, we must have both 1- 2k= 0 and k^2- 1= 0. The first equation has only k= 1/2 as solution and the second has only k= 1 or k= -1 as solutions. There is no value of k that makes both 0 so there is no value of k that gives only a single real root to the original quartic equation.

Hence we're looking for a value of k such that: $b^2 - 4ac = 0$

In this instance
  • $a = 1$
  • $b = 1-2k$
  • $c = k^2 -1$
With those equations,
b^2= (1- 2k)^2= 4k^2- 4k+ 1
4ac= 4k^2- 4 so b^2- 4ac= 4k^2- 4k+ 1- 4k^32+ 4= -4k+ 5= 0 so k= 5/4.
In that case, 1- 2k= 1- 5/2= -3/2 and k^2- 1= 25/16- 1= 9/16. The quadratic equation for u is u^2- (3/2)u+ 9/16= (u- 3/4)^2= 0 so that u= 3/4. But then x^2= 3/4 so the original equation has the two roots x= \sqrt{3}/2 and -\sqrt{3}/2
 
Last edited by a moderator:
We are slowly getting there! The equation is a quadratic in $x^2$. Therefore if $x_0$ is a solution, so is $-x_0$. The only way for there to be a unique real solution is if that solution is 0. The condition for 0 to be a solution is that the constant term vanishes. Thus $k^2-1=0,$ and so $k= 1$ or $k=-1.$ If $k=1$ then the equation becomes $x^4 -x^2=0$. But that has solutions $x=\pm1$ as well as $x=0.$ So we can rule out that case, and the only remaining possibility is $k=-1.$

If $k=-1$ then the equation becomes $x^4+3x^2=0$, and that does indeed have $x=0$ as its only real root. So the answer to the problem is that $k=-1.$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top