Open subspace of a compact space topological space

de_brook
Messages
74
Reaction score
0
It is a fact that if X is a compact topoloical space then a closed subspace of X is compact.
Is an open subspace G of X also compact?
please consider the following and note if i am wrong;

proof: Since G is open then the relative topology on G is class {H_i}of open subset of X such that the union of all sets in this class is G. but X is compact and each H_i is the intersection of G with an open subset P_i of X for corresponding i. The result follows from the fact {p_i} has a finite subclass which contains X.
hence every open subspace of a compact space is compact.

pls, am i right?
 
Mathematics news on Phys.org
Your proof is wrong, as you can have an open cover of G in the topology of X that doesn't cover X, and then when you reduce it to the induced topology on G it doesn't need to have a finite subcover.

Conclusion: All you did is prove that an open cover of a compact space is also an open cover of its subsets (not a very impressive result :p )

As a quick counterexample, see (0,1) contained in [0,1]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top