LagrangeEuler
- 711
- 22
In Quantum mechanics, when we have momentum operator ##\vec{p}##, and angular momentum operator ##\vec{L}##, then
(\vec{p} \times \vec{L})\cdot \vec{p}=\vec{p}\cdot (\vec{L} \times \vec{p})
Why this relation is correct, and not
(\vec{p} \times \vec{L})\cdot \vec{p}=\vec{p}\cdot (\vec{p} \times \vec{L})
?
Could you give me some reference for this?
(\vec{p} \times \vec{L})\cdot \vec{p}=\vec{p}\cdot (\vec{L} \times \vec{p})
Why this relation is correct, and not
(\vec{p} \times \vec{L})\cdot \vec{p}=\vec{p}\cdot (\vec{p} \times \vec{L})
?
Could you give me some reference for this?