Optimal Filter Coefficients: Correlation versus Least Squares

Squatchmichae
Messages
11
Reaction score
0
I found a claim in a paper (BSSA, Vol 81, No. 6: "A Waveform Correlation Method for Identifying Quarry Explosions", By D.B. Harris) concerning finding filter coefficients. The statement is given without proof. I cannot locate a reference or theorem for the following, and have not been able thus far to justify this claim quantitatively.

Suppose:

\begin{equation}
\mathbf{v}(t) = \displaystyle \sum_{k=1}^{N} \int_{-T}^{T} \! a_{k}(t-s) \mathbf{u}_{k}(s) \, ds,
\end{equation}

Then maximizing the correlation coefficient over filter coefficients a:

\begin{equation}
\rho(a) = \max_{a} \frac{\left\langle {\mathbf{u}(t), \mathbf{v}(t) } \right\rangle} { \sqrt{\left\langle {\mathbf{u}(t), \mathbf{u}(t) } \right\rangle \, \left\langle {\mathbf{v}(t), \mathbf{v}(t) } \right\rangle}}
\end{equation}

Is equivalent to:

\begin{equation}
\min_{a} \int_{-T}^{T} \! \parallel \mathbf{u}(t) - \mathbf{v}(t) \parallel^{2} \, dt,
\end{equation}

Where the inner product is defined by:

\begin{equation}
\left\langle {\mathbf{u}(t), \mathbf{v}(t) } \right\rangle = \int_{-T}^{T} \! {\mathbf{u}(t)}^{T} \mathbf{v}(t) \, dt,
\end{equation}

Qualitatively, this makes sense, of course. I initially attempted to prove this in the frequency domain by making use of the convolution theorem, to reduce the problem into one that looks similar to a Rayleigh quotient. This effort did not yield the correct equations.
 
Last edited by a moderator:
Mathematics news on Phys.org
I can only see a connection via the polarization identity: $$4 \langle \mathbf{u},\mathbf{v} \rangle = ||\mathbf{u}+\mathbf{v}||^2- ||\mathbf{u}-\mathbf{v}||^2 = 4 \cdot ||\mathbf{u}||\cdot ||\mathbf{v}||\cos \sphericalangle ( \mathbf{u},\mathbf{v})$$ which says that ##\rho(a)## is maximal if the angle is close to ##90°## or if ##||\mathbf{u}+\mathbf{v}||^2## is maximal and ##||\mathbf{u}-\mathbf{v}||^2## minimal, and vice versa. Both conditions depend also on the length of the sum.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top