I found
this page useful when I first met the hyperbolic functions in the context of special relativity. This is just one example of an application, rather than a comment how they originated, but you might find it interesting as it shows another parallel between circular and hyperbolic functions.
If you rotate an orthonormal coordinate system for Euclidean space, the way the coordinates of any point change can be expressed with a matrix of circular functions. For example, a rotation about the
z axis:
\begin{bmatrix}\cos{\theta} & \sin{\theta} & 0\\ -\sin{\theta} & \cos{\theta} & 0\\ 0 & 0 & 1\\\end{bmatrix}\begin{bmatrix}x\\ y\\ z\end{bmatrix}
In special relativity, besides rotating an orthonormal coordinate system for spacetime in this way, you can make another kind of change of coordinates that also preserves (spacetime) distances between points. This switches to a coordinate system moving at some velocity relative to the one you started with, for example moving along the
x axis:
\begin{bmatrix}\cosh{\phi} & -\sinh{\phi} & 0 & 0\\ -\sinh{\phi} & \cosh{\phi} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{bmatrix}\begin{bmatrix}t\\x\\ y\\ z\end{bmatrix}
where \phi = \text{tanh}^{-1}\left({\frac{v}{c}}\right), the inverse hyperbolic tangent, "artanh", of the speed of the new coordinate system as a fraction of the speed of light.